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Abstract

AI-based Network Intrusion Detection Systems
(AI-NIDS) detect network attacks using machine
learning and deep learning models. Recently, un-
supervised AI-NIDS methods are getting more
attention since there is no need for labeling,
which is crucial for building practical NIDS sys-
tems. This paper aims to test the impact of de-
signing autoencoder models that can be applied
to unsupervised an AI-NIDS in real network sys-
tems. We collected security events of legacy net-
work security system and carried out an experi-
ment. We report the results and discuss the find-
ings.
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I. INTRODUCTION

As network technology develops, the importance of net-
work security technology has also increased. Traditional
network security authentication using public key certifi-
cates can verify network traffic originated from trusted
users. However, it has limitation in that it cannot detect
and block abnormal network traffic generated from the
hosts compromised by attackers. To overcome this issue,
a Network Intrusion Detection System (NIDS) that can
find out network intrusion by monitoring network traffic
is used [15]. NIDS can be implemented in two ways: sig-
nature based approach and anomaly detection based ap-
proach [10]. While signature based NIDS employ rules
to check whether a given input is an attack or not [20],
anomaly detection based NIDS determines attacks relying
on how much the input deviates from the majority of the
data [22]. Therefore, signature based NIDS is suitable for
capturing well-known attacks, while anomaly based NIDS
is suitable for capturing unknown attacks [10].

In the past, classical supervised machine learning
models such as Naive Bayes, Decision Tree, Random
Forest, K-Nearest Neighbors, and Support Vector Ma-
chine(SVM) were widely used for building signature-

based AI-NIDS [4, 5, 18, 14]. Recently, deep learning
models such as Long Short-Term Memory, Autoencoder,
and Convolutional Neural Network have been much stud-
ied as they can learn features on their own, enhancing the
performance of NIDS [1, 2, 17, 7].

However, these supervised AI-NIDS have drawbacks.
First, they require labeled data, which takes time and cost
to label the data for training supervised machine learn-
ing models. Moreover, new attacks are being developed
everyday, and as a result, intrusion patterns are changing
rapidly [21]. Supervised learning models can show poor
performance in detecting such new attacks [12]. To handle
this problem, unsupervised machine learning models are
employed. Song et al. [17] reports that NIDS using autoen-
coder can achieve good performance on network bench-
mark datasets such as NSL-KDD and IoT datasets. The
study suggests to experiment different latent sizes for find-
ing the optimal autoencoder model. Nonetheless, it is not
confirmed yet if this finding can be applied to various situ-
ations.

Therefore, we carried out experiments using three dif-
ferent autoencoder structures and security events of legacy
network security system. This paper reports the results and
discuss how the model structure impacts the NIDS perfor-
mance.

II. UNSUPERVISED LEARNING MODELS

There are different unsupervised deep learning models.
GANs learn to classify fake data generated by the gener-
ator and existing real data using a discriminator [6]. Vari-
ations of GANs are developed to deal with image gener-
ation problems. StyleGANs redesign the architecture of
the generator to be style-based, producing better quality
images from the latent code [8]. CycleGANs perform un-
paired Image-to-Image translation from source to target by
training the correspondence between image pair, using the
adversarial loss and cycle consistency loss [23]. GANs can
be used for anomaly detection as well. AnoGAN applies
unsupervised learning approach to obtain large amounts of
labeled data in the medical field, filtering out normal data
and unseen data based on the anomaly score [16].
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Fig. 1. An example of the structure of the autoencoder.

Autoencoder is one of the most commonly used unsu-
pervised learning model. Autoencoder is a neural network
that compresses the input to a smaller vector and recon-
struct it to its original form. The difference occurring be-
tween the input and output is computed as the reconstruc-
tion error. An autoencoder model is trained to minimize
the reconstruction error. Variational autoencoders (VAE)
presented the model with a generative approach instead of
manifold approach [9]. Denoising autoencoder improved
the performance of the autoencoder model by adding noise
to the input data [19]. Even if data with good representa-
tion is slightly damaged, core features can be stably ex-
tracted from a part of the input data. Autoencoder can also
be used for anomaly detection. Aygun et al. proposed two
deep learning based anomaly detection models combining
autoencoders and denoising autoencoders, and achieved
higher performance than using single models [3]. Mirsky
et al. apply an ensemble scheme to autoencoder to detect
attack data [13]. Since GAN is difficult to train, we select
autoencoder as an experimental model.

Fig. 1 illustrates a structure of the autoencoder for build-
ing an AI-NIDS. A red-colored box denotes an encoder,
which compresses N inputs to a smaller vector, and a blue-
colored box denotes a decoder, which reconstructs the vec-
tor to N outputs. The encoder reduces the dimension of an
input and transfers it into a hidden representation. In this
process, high-dimensional features of the input are com-
pressed to a hidden representation, which is called a latent
vector. Through this, we can obtain small-dimensional im-
plicit information. The decoder reconstructs the latent vec-
tor into an output of the same shape as the input. In general,
decoder plays a role of assisting the encoder to better ex-
tract key features from the input. Autoencoders use only
normal data in the training phase so it is trained to recon-
struct input as normal data as much as possible. But in the
test phase, attack data is also used. So, if autoencoder tries
to reconstruct attack data to normal data, the reconstruc-
tion error would be high. Using this method, autoencoder
can perform anomaly detection in unsupervised learning
manner.

III. EXPERIMENTS

A. Security Event Dataset

For evaluation, we collected raw security events from
a large enterprise system in real-world environments. The
data has been collected over several months, and threat la-
beling was separately conducted based on an intrusion oc-
currence report by security operations center (SOC) ana-
lysts [11]. In the dataset, there are 798 cyber threats, which
occurred evenly over the collection period; and there are
also 547 system attacks, 240 scanning, and 11 warm at-
tacks (the categorizing was conducted by the SOC ana-
lysts). In total, the data include approximately 4.7 millions
security event data, of which 0.23 millions were identi-
fied as cyber threats (i.e., 4,552,316 data were labeled as
‘Normal’, and 230,026 data related to network intrusions
were labeled as ‘Threat’). Each raw security event is con-
verted to statistical pattern profiles of concurrent events,
following the data preprocessing methodology presented
in [11]. In the preprocessing stage, an event vector is con-
verted from an event set, and the final event profile of cor-
related events is transformed by event embedding from an
event vector. These pattern profiles consist of 311 features
to represent the concurrency of each security event within
configured time windows, and normalized to be fed into a
deep learning model.

Table 1 shows the count of samples for the train, valida-
tion, and test sets. The train dataset consists of only normal
data for training the autoencoder models. The validation
and the test data are highly imbalanced: the size of the nor-
mal data is 15 times larger than the attack data.

Train Validation Test
Normal 41,029 41,257 41,079
Attack 0 2,536 2,715
Total 41,029 43,793 43,794

Table 1. Statistics of security event dataset
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Model The structure of the autoencoder model
(64, 2) [input] - 64 - 32 - [latent] - 32 - 64 - [output]

(128, 2) [input] - 128 - 64 - [latent] - 64 - 128 - [output]
(128, 3) [input] - 128 - 64 - 32 - [latent] - 32 - 64 - 128 - [output]

Table 2. Structure of autoencoders

B. Experiment Setup

We use the Area Under the Curve (AUC) score to mea-
sure the overall model’s performance according to the
change in model weight in each training process. The
model with the highest AUC score was chosen as the best
model, by comparing the AUC score of the Receiver Op-
erating Characteristic (ROC) during the training process.
After the model was selected, a threshold value classifies
the outputs of the autoencoder into normal and attack class.
The Z-score of standard normal distribution of reconstruc-
tion error was used as a criterion to select the threshold
value. If the Z-score of the reconstruction error is greater
than the set threshold, it is classified as an attack. Other-
wise, it is classified as normal.

Autoencoders can take on different structures varying
the number of layers and latent size. We configured three
representative structures of autoencoder, setting the num-
ber of layers for each encoder and decoder and the size of
the first layer, following the evaluation methods in [17].
Detailed structures are presented in Table 2. In the case of
the (64, 2) and (128, 3) model structures, the size of the
layer before the latent vector is 32, so the settable latent
vector size ranges from 1 to 31. During the experiment,
very little changes in the performance were observed when
the latent vector is became larger than 10 dimensions. Ac-
cordingly, the latent vector sizes of the all three autoen-
coders are equally set only from 1 to 10. Each model was
trained for 100 epochs with 8,096 batch size. Adam opti-
mizer was used and learning rate was set to 1e-4.

C. Evaluation Metrics

We used three metrics for evaluation: accuracy, F1-
score, and Matthew’s correlation coefficient (MCC). MCC
is calculated as follows, where T P denotes true positive,
T N denotes true negative, FP denotes false positive, and
FN denotes false negative.

MCC =
T P ·T N −FP ·FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(1)

Accuracy is the number of correctly predicted data di-
vided by the total number of data. F1-score is the harmonic
average of precision and recall. MCC is an evaluation met-
ric used for binary classification and has a value between -1
and 1 (equation 1). A MCC score close to 1 indicates good
performance, while a MCC score close to -1 indicates a
bad performance. MCC is recognized as a balanced scale

since it evaluates performance in all classes fairly, taking
into account the bias of the data.

IV. THE EXPERIMENT RESULTS

In this section, we report the result of the experiments
and the visualization of how the autoencoder model classi-
fies data.

A. Attack Detection Performance

Fig. 2 shows the performance of the autoencoder with
the structure of (64, 2). In the accuracy graph, the perfor-
mance drops significantly when the latent is greater than
or equal to 5. In the F1-score and MCC graph, on the other
hand, the performance gradually improves when the latent
is greater than or equal to 6. Since the data are highly im-
balanced, we believe that the MCC metric best represents
the performance. In other words, when the model size and
the layers are small, the performance improves as the latent
size increases.

Fig. 3 shows the performance results of the autoencoder
with the structure of (128, 2). It is noted that the overall ac-
curacy is less than that of the structure of (64, 2) and main-
tains similar performance regardless of the latent size. In
the F1-score and MCC graphs, the performance improves
a little as the latent size increases. Overall, these scores are
greater than those with the structure (64, 2).

Fig. 4 shows the performance results of the autoencoder
with the structure of (128, 3). All three metrics show that
the level of performance is maintained regardless of the
latent size. The F1 and MCC scores are greater than those
with the structure of (128, 2).

Structure Latent Accuracy F1-score MCC
(64, 2) 9 0.7568 0.3374 0.3873

(128, 2) 9 0.7586 0.3390 0.3889
(128, 3) 8 0.7587 0.3391 0.3890

Table 3. The performance results in each structure of autoencoder
at the best MCC score.

Table 3 shows the performance in accuracy, F1-score,
and MCC for each structure where the autoencoder model
with the highest MCC score is selected. The bold text in-
dicates the highest performance. The autoencoder with the
structure of (128, 3) recorded 0.7587 in accuracy, 0.3391
in F1-score, and 0.3890 in MCC, which are best perfor-
mances among the three autoencoders.
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Fig. 2. The performance of the autoencoder with the structure of (64, 2) as the latent size increases.
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Fig. 3. The performance of the autoencoder with the structure of (128, 2) as the latent size increases.
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Fig. 4. The performance of the autoencoder with the structure of (128, 3) as the latent size increases.

B. Discussion

This section summarizes and discusses our findings.
When discussing the result, we use MCC to measure the
performance of the model as the real network dataset tends
to be imbalanced. We obtained the best performance (MCC
= 0.389) when the layer size is 128 (the greatest), the num-
ber of layer is 3 (the greatest), and the latent dimension
is 8. When the model is small, the performance in MCC
improves as the latent size increases. However, the model
shows stable and better performance regardless of the la-
tent size when the model size and the layers are greater.
Our findings are partially in line with the results found in
the previous study [17], which evaluates NIDS using the
network benchmark NSL-KDD and the IoT datasets.

First, we confirm that the model capacity impacts the
NIDS performance. In general, the models with large ca-
pacities tend to perform better. Furthermore, we discover
that the model depth (i.e., number of hidden layers) is pos-
itively associated with the performance; the performance
improves as the model depth grows.

Second, we observe the finding reported in [17] that IDS
performance enhances as the latent dimension increases,
only when the model size is small. While [17] obtained

some best performances when the latent sizes are very
small, we obtained the best MCC values when the latent
size are close to the maximum value.

Third, we observe that the performance is stable as the
model size grows. This finding was only suggestive in [17],
and confirmed by our study.

V. CONCLUSION

In this work, we evaluate unsupervised intrusion detec-
tion using real security event data. We conducted exper-
iments testing different autoencoder models to test how
the model structure impacts the performance following the
methodology [17]. We observe that the model structure im-
pacts the NIDS performance in terms of two characteris-
tics. Autoencoder models tend to produce stable and better
performance as the model size gets larger. We also suggest
to set the threshold that determines if a given sample is an
attack or not, taking into account the performance as well
as the practical efficiency of running the system in the real
environment. We believe that these findings can help AI-
NIDS developers design optimal unsupervised models in
the real network environment.

4



ACKNOWLEDGEMENT

This work was partly supported by Institute of Infor-
mation & communications Technology Planning & Evalu-
ation(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-00421, Artificial Intelligence Graduate School
Program(Sungkyunkwan University)) and Institute of In-
formation & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea govern-
ment(MSIT) (No.2020-0-00952, Development of 5G Edge
Security Technology for Ensuring 5G+ Service Stability
and Availability).

REFERENCES

[1] Zeeshan Ahmad, Adnan Shahid Khan, Cheah Wai Shiang,
Johari Abdullah, and Farhan Ahmad. Network intrusion
detection system: A systematic study of machine learning
and deep learning approaches. Transactions on Emerging
Telecommunications Technologies, 32(1):e4150, 2021.

[2] Sara A Althubiti, Eric Marcell Jones, and Kaushik Roy.
Lstm for anomaly-based network intrusion detection. In
2018 28th International telecommunication networks and
applications conference (ITNAC), pages 1–3. IEEE, 2018.

[3] R Can Aygun and A Gokhan Yavuz. Network anomaly
detection with stochastically improved autoencoder based
models. In 2017 IEEE 4th international conference on cy-
ber security and cloud computing (CSCloud), pages 193–
198. IEEE, 2017.

[4] Anna L Buczak and Erhan Guven. A survey of data min-
ing and machine learning methods for cyber security intru-
sion detection. IEEE Communications surveys & tutorials,
18(2):1153–1176, 2015.

[5] Zina Chkirbene, Aiman Erbad, Ridha Hamila, Amr Mo-
hamed, Mohsen Guizani, and Mounir Hamdi. Tidcs: A dy-
namic intrusion detection and classification system based
feature selection. IEEE Access, 8:95864–95877, 2020.

[6] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139–144, 2020.

[7] Wooyeon Jo, Sungjin Kim, Changhoon Lee, and Taeshik
Shon. Packet preprocessing in cnn-based network intrusion
detection system. Electronics, 9(7):1151, 2020.

[8] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 4401–4410, 2019.

[9] Diederik P Kingma and Max Welling. Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114, 2013.

[10] Sailesh Kumar. Survey of current network intrusion detec-
tion techniques. Washington Univ. in St. Louis, pages 1–18,
2007.

[11] Jonghoon Lee, Jonghyun Kim, Ikkyun Kim, and Kijun
Han. Cyber threat detection based on artificial neural
networks using event profiles. IEEE Access, 7:165607–
165626, 2019.

[12] John McHugh, Alan Christie, and Julia Allen. Defending
yourself: The role of intrusion detection systems. IEEE
software, 17(5):42–51, 2000.

[13] Yisroel Mirsky, Tomer Doitshman, Yuval Elovici, and
Asaf Shabtai. Kitsune: an ensemble of autoencoders
for online network intrusion detection. arXiv preprint
arXiv:1802.09089, 2018.

[14] Mrutyunjaya Panda, Ajith Abraham, Swagatam Das, and
Manas Ranjan Patra. Network intrusion detection system:
A machine learning approach. Intelligent Decision Tech-
nologies, 5(4):347–356, 2011.

[15] Bane Raman Raghunath and Shivsharan Nitin Mahadeo.
Network intrusion detection system (nids). In 2008 First
International Conference on Emerging Trends in Engineer-
ing and Technology, pages 1272–1277. IEEE, 2008.

[16] Thomas Schlegl, Philipp Seeböck, Sebastian M Waldstein,
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SUMMARY OF THIS PAPER

A. Problem Setup

As network technology develops, the importance of network security technology has also increased. A Network
Intrusion Detection System (NIDS) can be implemented in two ways: signature based approach and anomaly de-
tection based approach. Signature based NIDS employs rules to check whether a given input is an attack or not,
and anomaly detection based NIDS determines attacks relying on how much the input deviates from the majority
of the data. Signature based NIDS using supervised learning model is suitable for capturing well-known attacks,
but has drawbacks such as the cost for labeled data and difficulty in responding to rapidly changing network
intrusion. To handle this problem, anomaly detection using unsupervised machine learning models (MS-NIDS)
have been deployed. In this paper, we expand the previous approach that leverage autoencoder models which
investigate model structure and parameters for achieving good performance on network benchmark datasets
such as NSL-KDD and IoT datasets.

B. Novelty

We carried out experiments using three different autoencoder structures and security events of legacy network
security system. This paper reports the results and discuss how the model structure impacts the NIDS perfor-
mance.

C. Algorithms

We use the Area Under the Curve (AUC) score to measure the overall model’s performance according to the
change in model weight in each training process. The model with the highest AUC score was chosen as the
best model, by comparing the AUC score of the Receiver Operating Characteristic (ROC) during the training
process. After the model was selected, a threshold value classifies the outputs of the autoencoder into normal
and attack class. The Z-score of standard normal distribution of reconstruction error was used as a criterion
to select the threshold value. If the Z-score of the reconstruction error is greater than the set threshold, it is
classified as an attack. Otherwise, it is classified as normal.

D. Experiments

We configured three representative structures of autoencoder setting the number of layers for each encoder and
decoder and the size of the first layer. We evaluate those models using real security event data. The results of
our evaluation show that the autoencoder with 3 layers and latent vectors of size 8 recorded 0.7587 in accuracy,
0.3391 in F1-score, and 0.389 in MCC, which are best performances among the three autoencoders.

We observe that the model structure impacts the NIDS performance in terms of model size and latent dimension.
Autoencoder models tend to produce stable and better performance as the model size gets larger regardless of
the latent size. When the model is small, the performance in MCC improves as the latent size increases.


	Introduction
	Unsupervised Learning Models
	Experiments
	Security Event Dataset
	Experiment Setup
	Evaluation Metrics

	The Experiment Results
	Attack Detection Performance
	Discussion

	Conclusion
	Problem Setup
	Novelty
	Algorithms
	Experiments


