
Planning-Integrated Story Graph for Interactive Narratives
Wook-Hee Min, Eok-Soo Shim, Yeo-Jin Kim, and Yun-Gyung Cheong

Graphics&OS Group, Samsung Advanced Institute of Technology
Giheung-Gu, Gyeonggi-Do, South Korea

+82-31-280-9686

{ wookhee.min, esp.shim, yeoj.kim, yuna.cheong }@samsung.com

ABSTRACT
The advances in the interactive contents enable users to have a
variety of experiences on diverse devices. In particular, two main
approaches have been researched to construct digital interactive
contents: a) conditional branch techniques and b) planning
techniques. Each approach offers its own benefits; the conditional
branch techniques allow the user to create tightly-plotted
interactive contents; the planning techniques reduce the author’s
burden to specify every possible connection between contents
considering the user input. As an attempt to combine these
advantages provided by each technique, this paper discusses an
interactive story structure incorporating the planning technique
into the conditional branch techniques. Also, we briefly describe
PRISM, a framework capable of creating and playing our story
structure. We expect that the author can compose well-woven
stories which can respond to a wide range of user interaction.

Categories and Subject Descriptors
E.1 [DATA]: Data Structures – Graphs and networks; I.3.6
[COMPUTER GRAPHICS]: Methodology and Techniques –
Interaction techniques; H.5.1 [INFORMATION INTERFACES
AND PRESENTATION (e.g., HCI)]: Multimedia Information
Systems – Animations

General Terms
Design

Keywords
Interactive Narrative Representation, Story Structure, Interactive
Content Structure, Interactive Narrative Platform

1. INTRODUCTION
While a variety of approaches have been introduced to create
interactive contents, two approaches have been commonly used:
a) conditional branch techniques with which users experience a
story that flows according to conditional branches as specified at
design time, and b) planning techniques with which sequences of
story units are constructed toward story goals.

The conditional branch technique has been recognized as an
effective tool for the author to create well-woven interactive
contents [2; 3; 4; 8; 9]. A branching narrative is typically
illustrated as a story graph as in Figure 1, which consists of nodes
and conditional branches; a node denotes a series of scripted
scenes, and a conditional branch denotes transition from one node
to another depending on the user input. This approach is adequate
to tightly-plotted interactive stories. As making use of such an
approach, INSCAPE [2], a software tool for the user to plan, build
and experience interactive stories utilizing graphical
representation, splits a story into logical containers known as
stages and situations and it constructs a story graph using
branching techniques. Although this approach gives the author
intuitive illustration of an interactive story, it has little flexibility
to handle the user interaction; the plot only flows as the author’s
explicit design. Therefore, a highly interactive story system
confronts explosion of conditional branches as recognized by a
number of researchers [1; 3; 5]. Thus, the author is burdened with
constructing the plot taking into accounts all possible user input at
the design time; otherwise, the user’s interaction would be
ignored.

Figure 1. Story graph used in the OZ project [4]

In an interactive story system employing the planning techniques,
on the other hand, the author is not responsible for linking every
single node to node; instead she needs to create story units and
encode their preconditions and postconditions with which a
planning algorithm searches for the next content as the user
interacts with the system. A precondition is a logical statement
which describes the state for the story unit to take place; an
postcondition is a logical statement which describes a state that is
altered during the unit execution. With this planning formalism
annotated units and a goal state along with an initial state, the
planning algorithm constructs a story plot as a sequence of units.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SRMC’08, October 31, 2008, Vancouver, British Columbia, Canada.
Copyright 2008 ACM 978-1-60558-315-0/08/10...$5.00.

Start

Ending

Two

Ending

One

When the system receives user input that requires changes to the
current story, the system re-plans it to deal with the interaction.
For instance, MIMESIS [11] uses a partial-order plan for a fully
structured plot where it either incorporates user’s arbitrary actions
into the story or tries to avoid them if the actions conflicts with
the plot. In the real-time interactive drama Façade [5], its drama
sequencer selects the next story unit (called story beat) from the
ones that their preconditions are fulfilled in the current state. As
an attempt to combine both approaches (branching narratives and
planning techniques) Magerko [6] presents an authoring tool that
constructs a complete story structure from a partially specified
structure using a planning technique.

This paper presents an interactive content structure, called PRISM
container, which incorporates the planning formalism into
branching narratives. As a result, the PRISM container can
describe tightly-plotted contents, which are developed at the
design time, with the conditional branch techniques and, at the
same time, provide the creation of highly interactive story
contents through a planning technique.

In the next section, we discuss the PRISM container in detail.
Then, we introduce a sample scenario for an interactive content
based on a short story and represent it with PRISM container.
Next, we briefly describe our interactive narrative system named
PRISM which utilizes the PRISM container. Finally, we conclude
this paper by discussing extensibility issues for this approach.

2. PRISM Container: Interactive Content
Structure
A PRISM container is an XML document that represents an
interactive content. To encode a PRISM container, we define an
xml schema that contains one Storymap and a series of Actions; a
storymap element describes the story space that the user would
explore; it consists of Situation, Condition, State, StateUpdate and
Browsing elements. Each element except for the browsing has its
own ID and thus can be referenced by other elements through the
ID, so that there is no need to define the same element
redundantly. On the other hand, actions indicate immediate
response to the user input, such as a character performing
repetitive gestures responding to a mouse click. In this section, we
describe all elements contained in the PRISM container that can
cover any interactive contents fully.

Figure 2. Storymap structure of the PRISM container

2.1 Situation
Situation is the same term as a node in a typical story graph as in
Figure 1. An author constitutes a situation from a sequence of
beats—an atomic unit of dramatic action, written in XML .
Situations are classified into two types: local and global situations.
While the former is related to the main story plot, the latter is not
directly related to the main story but serves as supplements to the
story. Global situations can be reached from any situations when
their conditions are met. In addition, once a global situation is
activated, the story returns to the previous story point—where the
global situation is called—when the global situation is completed.
An example of this is described in section 4. One of the most
important characteristics of situation is that a situation has
optional elements of preconditions and postconditions, which
enable the use of planning. More details on planning using our
structure are discussed in the following sections.

2.2 Condition
A condition is a logical statement that describes user input or the
story state for the interactive system to determine the execution of
conditional branches, stateupdates and planning in a given
situation. Conditions can be classified into two different types:
unit condition and composite condition. The unit condition is a
single condition that represents a specific event or a story state.
For example, the condition C1:LeftClickOnCharacterA denotes an
event when the user clicks on the character A, and the condition
C2:CharacterAHasSword represents the story state that the
character B is having a sword. A composite condition is
constituted by a compound of multiple conditions and logic
operators such as AND and OR. For example, the conjunction of
“LeftClickOnCharacterA” and “CharacterAHasSword” can be
represented as (C1 AND C2). By employing this composite
condition, complicate conditions can be described in a simple way.

Although conditions can be referenced by browsing or situations,
this section describes only conditions referenced by situations; the
conditions referenced by browsing is explained in the section 2.4.
When conditions are referenced by a situation, they serve as its
preconditions—logical statements that should be fulfilled prior to
be reached from other situations.

2.3 State and StateUpdate
The state element denotes information about the story world that
should be maintained during the play of an interactive content,
thereby influencing the story development. States are categorized
into two types: the generic state and the content-specific state. The
generic states describe information that is commonly maintained
regardless of interactive contents such as the total play time, the
total number of user interactions and so on. Such states are always
managed by the system without the author’s specification. On the
other hand, the content-specific state is collected and updated
only when the author specifies its associated stateupdate elements
in the PRISM container. For instance, ST1:CharacterAWeapon
describes the type of weapon that the character A possesses.

In addition to the state, the PRISM container contains
StateUpdate; as its name implies, StateUpdate is a functional
description that specifies the alternation of a state. For example, if
the character A, mentioned above in ST1, acquires a shotgun for
his weapon, the stateupdate STU1 can be defined as in Figure 3.

<StateUpdate stateUpdateID=STU1>
<RefStateID> ST1 </RefStateID>
<Update> Set </Update>
<Value> shotgun </Value>

</StateUpdate>

Figure 3. Example for Stateupdate

2.4 Browsing
The browsing element plays a significant role in structuring the
multi-story line of an interactive content by integrating situations,
conditions and stateupdates. The role of browsing corresponds to
the set of arcs in conventional branching narrative. Browsing
consists of a set of SituationCheck elements, each of which has its
own ID referring to a situation contained in the storymap. Each
SituationCheck, which corresponds to the source situation,
contains a sequence of BranchCheck elements, each of which
consists of RefSituationaID (i.e., destination situation),
RefConditionID (i.e., a condition that triggers the activation of the
destination situation), and CaseValue. The casevalue can be either
true or false. If the casevalue is set true, branching to the
destination situation is executed when the condition is fulfilled;
otherwise, the branch would be executed when the applied
conditions are not fulfilled.

Situation

Check
Branch

Check

beatbeatRefSituationID

beatbeatRefConditionID

beatbeatCaseValue

Sequence

Sequence

Sequence

Browsing

Figure 4. Browsing structure in Storymap

Further, it is possible to use combination of multiple conditions. If
an author wants to make the branch B1 which is reachable only
when the condition C1 and the condition C2 are satisfied, then she
should assign true on the both casevalue of C1 and C2. If the
author wants to make branch B2 which is reachable when C1 is
satisfied but C2 is not fulfilled, she should assign true on the
casevalue of C1 and false on that of C2.

2.5 Actions

Figure 5. Action Structure for PRISM Container

The action element refers to a temporary and immediate animation
which is irrelevant to the story flow but presents pleasing
animations to the users while she interacts with the system. Figure

5 represents the schema structure of the action element. As
described in the figure, the action element is classified into two
types: the single-object action and the multi-object action. The
single-object action is the animation that involves a single object
such as a character making a somersault when a user clicks on it.
The multi-object action, on the other hand, is the animation that
involves multiple objects, such as an animation of pouring water
into a cup when the user drags a jar onto the cup.

3. Sample Scenario: One Thousand Dollars
The sample is based on the short story “One Thousand Dollars”
by O. Henry. The story begins with a situation in which Mr.
Gillian was told that he inherited one thousand dollars from his
late uncle, who had been supporting him, by a lawyer. According
to the will, however, he was required to account for every penny
he spent. There was another heir, Miss Hayden, a ward of his late
uncle, who was left only a ring and the $10. Mr. Gillian consulted
with his friends and people he met on the street about the proper
usage of his money. He finally visited Miss Hayden, whom he had
loved alone, and gave her the one thousand dollars. Back at the
lawyer's office, he was told that fifty grand for him will be paid to
Miss Hayden if he had squandered his money. He thereon told the
lawyers that he lost the money at the race track and left with
whistling [7].

Figure 6. Sample interactive content story map:
“One Thousand Dollars”

We adapted the original content to an interactive content as
described in Figure 6. In our scenario, a user plays the role of Mr.
Gillian’s friend who can influence his decision by expressing
opinions through interaction such as typing text or clicking mouse
buttons. The scenario begins with the initial situation S1:Get
$1000 in which Mr. Gillian has been just given one thousand
dollars from the lawyer. Mr. Gillian is then asked to make a
choice between whether he goes to meet his friend or to attend his
uncle’s funeral. If he makes a selection of the latter, the story
progresses to the situation S3:AttendAFuneral, which is not
included in the original novel. In this AttendAFuneral situation,
he goes to the funeral where he encounters lots of people
including a female relative. At this point, the user may encourage
Mr. Gillian to have conversation with the relative, which drives
the story into the S4:MeetARelative situation. While talking with
the female relative in the MeetARelative situation, he becomes

aware that his uncle assigned a huge amount of money to be given
to him in case his expenditure of $1,000 was desirable. Knowing
this fact, Mr. Gillian departs to meet Hayden and have a talk with
her (S5:Meet Hayden), and finally, he visits the lawyer back to
refuse the inheritance (S6:RefuseInheritance).

4. PRISM Container: One Thousand Dollars
This chapter describes a PRISM container (see Figure 7 and
Figure 8) that represents the sample scenario “One Thousand
Dollars.” Due to space limits, we focus only on two situations,
S1:Get $1000 and S4:Meet a relative, to explain how the
conditional branch technique and the planning technique are
integrated in the PRISM Container.

We first describe the branching technique and the stateupdate
element used in our approach with an example of the initial
situation S1. We then illustrate the use of planning technique with
an example of the situation S4. For the reader’s convenience, the
PRISM container is separated into browsing and non-browsing
parts in the following figures. Both Figure 7 and Figure 8 are not
describing the whole PRISM container, but a portion of it to
demonstrate the expressiveness of the PRISM container.

As an illustration of the branching technique, the initial situation
S1:Get $1000 contains two single conditions
C1:Typed(MeetFriend) and C2:Typed(AttendFuneral). These
conditions have their associated conditional branches B1 and B2
respectively such that B1 advances the story to the situation
S2:Meet a friend and B2 advances the story to the situation
S3:Attend a funeral. Thus, if the user types “Attend a funeral,”
she will be presented with the situation S3, as specified by the
browsing B2. In addition, the situation S1 has a postcondition that
is associated with the stateupdate STU_MONEY_SET which
assigns 1000 to the state ST_MONEY that keeps track of the
amount of Mr. Gillian’s money. Thus, once the situation S1 is
completed, the state is set one thousand.

<StoryMap>
<SituationGroup>

<LocalSituationList>
<Situation situationID="S1">

<Postcondition>
<RefStateUpdateID>

STU_MONEY_SET
</RefStateUpdateID>

 </Postcondition>
 <Description>Get $1000</Description>

</Situation>
<Situation situationID="S3">

 <Postcondition>
<RefStateUpdateID>

STU_LOCATION_FUNERAL
</RefStateUpdateID>

 </Postcondition>
 <Description>Attend a funeral</Description>

</Situation>
<Situation situationID="S4">

 <Precondition>
<RefConditionID>C4</RefConditionID>

 <RefConditionID>C5</RefConditionID>
 </Precondition>
 <Description>Meet a relative</Description>

</Situation>
</LocalSituationList>

</SituationGroup>

<ConditionList>

<Condition conditionID="C1">
<UnitCondition>

<SystemDefinedType>Typed</SystemDefinedType>
</UnitCondition>
<Value>

<StringValue>MeetFriend</StringValue>
</Value>

</Condition>
<Condition conditionID="C2">

<UnitCondition>
<SystemDefinedType>Typed</SystemDefinedType>

</UnitCondition>
<Value>

<StringValue>AttendFuneral</StringValue>
</Value>

</Condition>
<Condition conditionID="C4">

<UnitCondition>
<SystemDefinedType>IstSet</SystemDefinedType>

</UnitCondition>
<StatusID>ST_LOCATION</StatusID>
<Value>

<StringValue>funeral</StringValue>
</Value>

</Condition>
<Condition conditionID="C5">

<UnitCondition>
<SystemDefinedType>Clicked</SystemDefinedType>

</UnitCondition>
<Object>

<ObjectID>OBJ_RELATIVE1</ObjectID>
</Object>

</Condition>
</ConditionList>

<StateList>

<State>
<StateID>ST_MONEY</StateID>
<StateType>Integer</StateType>

</State>
<State>

<StateID>ST_LOCATION</StateID>
<StateType>String</StateType>

</State>
</StateList>
<StateUpdateList>

<StateUpdate stateUpdateID=STU_MONEY_SET>
<RefStateID>ST_MONEY</RefStateID>
<Update>Set</Update>
<Value>1000</Value>

</StateUpdate>
<StateUpdate stateUpdateID=STU_LOCATION_FUNERAL>

<RefStateID>ST_LOCATION</RefStateID>
<Update>Change</Update>
<Value>funeral</Value>

</StateUpdate>
</StateUpdateList>

<Browsing>

…
 </Browsing>
</StoryMap>

Figure 7. Sample PRISM container without Browsing part

<Browsing>
<SituationCheck refSituationID="S1">

<BranchGroup>
<ConditionalBranch>

<RefConditionIDList>
<RefConditionID>C1</RefConditionID>

</RefConditionIDList>
<Branch branchID="B1">

<CaseValueList>
<CaseValue>True</CaseValue>

</CaseValueList>
<DestinationSituationID>S2</DestinationSituationID>

</Branch>
</ConditionalBranch>
<ConditionalBranch>

<RefConditionIDList>
<RefConditionID>C2</RefConditionID>

</RefConditionIDList>
<Branch branchID="B2">

<CaseValueList>
<CaseValue>True</CaseValue>

</CaseValueList>
<DestinationSituationID>S3</DestinationSituationID>

</Branch>
</ConditionalBranch>

</BranchGroup>
</SituationCheck>
<SituationCheck refSituationID="S4">
<BranchGroup>
<ConditionalBranch>

<RefConditionIDList>
<RefConditionID>C6</RefConditionID>

</RefConditionIDList>
<Branch branchID="B5">
<CaseValueList>
<CaseValue>True</CaseValue>

</CaseValueList>
<DestinationSituationID>S5</DestinationSituationID>

</Branch>
</ConditionalBranch>

</BranchGroup>
</SituationCheck>

</Browsing>

Figure 8. Sample PRISM container: Browsing part

As an illustration of planning in our approach, the situation
S4:Meet a relative has two preconditions of
C5:Clicked(OBJ_RELATIVE1) and C4:IsSet(ST_LOCATION,
funeral), where ST_LOCATION refers to the state about the Mr.
Gillian’s location and OBJ_RELATIVE1 refers to the specific
character that plays the role of a Gillian’s relative. Because this
situation has no incoming branches, it is only reachable when its
preconditions are achieved—i.e., when the user clicks the relative
character in the funeral; since S3:Attend a funeral has the
postcondition Set(ST_LOCATION, funeral), the situation S4 is
reachable from S3 through planning.

As mentioned in the section 2.1, situations are classified into local
situations and global situations. In Figure 6, the situations from
S1 through S8 are the local conditions while S9 is a global
situation. These local situations account for the main story of the
interactive content. The global situation, on the other hand,
typically provides background knowledge for users. For example,
the situation S9 supplies the user with additional information
about Gillian’s uncle such as his career and occupation.

5. A SYSTEM OVERVIEW: PRISM

Figure 9. PRISM container processing diagram

This section presents a platform in which a PRISM container is
used to represent interactive narratives. PRISM is an integrated
system for interactive story creation and presentation; the system
takes in a PRISM container and unfolds the story based on the
interaction with the participant as if a prism breaks light up into
different spectral colors.

PRISM consists of three components: the PRISM writer, the
PRISM player, and the TVML (TV program Making Language)
[10] player. The PRISM writer is an interactive story authoring
tool which interleaves the participant’s decision points with story
material (i.e. 3D objects, images, sounds, movie clips, etc.)
following the PRISM container schema. The PRISM player takes
as input the container and determines the next situation to be
presented to the user as the interaction arises. The TVML player
takes in text descriptions (i.e. TVML scripts) and realizes them
into 3D animation.

Figure 9 shows how the PRISM player processes a PRISM
container. Once the player takes in the PRISM container, the
XML decoder parses it to build the story map structure for the
story director. Thereon the story director loads the story map on
the memory and requests the TVML player to render the initial
situation of the story map. Once the TVML player completes
rendering the situation, it requests the state manager to update
related states (e.g., situation completion). If the user interaction
arises while rendering the content, the event handler dispatches
the user input to the story director and the state manager.

On receiving the event, the story director generates a proper
response to the user input. If the event corresponds to one of the
conditions attached to the current situation, the story director
advances the story to the destination situation of the branch. If the
event relates to an action, the director gives the TVML player to
renders the animation script for the user input. Lastly, if the story
director finds no matching conditions from conditional branches
and actions, it requests the planner to retrieve the next situation. If
the planner returns a situation whose preconditions are satisfied in
the current state, the story director progresses the story into the
situation. If such situations are not found, the story director takes
no response to the user input.

Although conditional branching and situation planning are both
available, the conditional branches are more prioritized than the
planning in the current design. As an exception, the planning can
take precedence over branching when the situation contains only a

single blank conditional branch, which connects the current
situation to a destination situation without checking conditions.
For example, the situation S2:Meet a friend in figure 6 contains a
blank condition that leads the story to S5:Meet Hayden without
the need of user interaction. In this case, the story can advance to
the situation S8: Go to bar by the planning technique if the user
types “Go to bar” which achieve the precondition of S8. However,
the decision when to use the branching and planning can be
customized by the system designer using a policy table.

6. Conclusions
The conditional branch technique has been extensively used as an
effective tool for the author to create tightly-plotted interactive
contents [2; 3; 4; 8; 9]. However, since the plot only flows as the
author explicitly specifies, a highly interactive story system
confronts explosion of conditional branches [1; 3; 5].

To address this issue, this paper presents a hybrid approach to
structuring interactive contents by augmenting the planning
formalism (i.e., preconditions and postconditions) into the
conditional branch technique. As a result, the PRISM container
can describe well-woven contents, which are developed at the
design time with the conditional branch technique, and provide
the creation of highly interactive story contents through a
planning technique. In addition, as an effort to enhance reusability
of elements in the interactive content structure, we present the
composite condition and the casevalue to the story structure,
which can express complicated conditions simply by
compounding a variety of single conditions via the reference of
their IDs. This paper also describes an example adapted from a
short original story using our structure and presents an interactive
narrative framework that utilizes the PRISM container.

Although the sample example has shown the expressiveness of
our structure, we plan formal experiments to evaluate its
effectiveness in representing tightly plotted and highly interactive
story content in interactive narrative systems as our future work.

7. REFERENCES
[1] Crawford, C. 1989. Indirection. Journal of Computer Game

Design, Volume 3.

http://www.erasmatazz.com/library/JCGD_Volume_3/JCGD
_Volume_3_Index.html

[2] INSCAPE. 2008. DOI=http://www.inscapers.com

[3] Iurgel, I.: From Another Point of View: ArtEFact. In: 2nd
international conference on Technologies for Interactive
Digital Storytelling and Entertainment, pp. 26--35,
Darmstadt, Germany (2004)

[4] Kelso, M. T., Weyhrauch, P., and Bates, J. (1993). Dramatic
Presence. Presence: The Journal of Teleoperators and
Virtual Environments, 2(1), 1-15.

[5] Mateas, M. and A. Stern. 2005. Structuring Content in the
Façade Interactive Drama Architecture. In Proceedings of the
1st Annual Conference on Artificial Intelligence and
Interactive Digital Entertainment (Marina del Rey, USA,
June 1-3, 2005), AAAI Press, 93-98.

[6] Magerko, B. 2005. Story Representation and Interactive
Drama. In Proceedings of the 1st Annual Conference on
Artificial Intelligence and Interactive Digital Entertainment
(Marina del Rey, USA, June 1-3, 2005), AAAI Press.

[7] O. Henry, 2001, One Thousand Dollars and Other Plays
DOI=http://www.searchlit.org/stories/7687.php

[8] Spierling, U., Weiß, S.A., Müller, W.: Towards Accessible
Authoring Tools for Interactive Storytelling. In: 3rd
International Conference on Technologies for Interactive
Digital Storytelling and Entertainment (2006)

[9] Swartout, W., Hill, R., Gratch, j., Johnson, W. L., Kyriakakis,
C., LaBore, C., Lindheim R., Marsella, S., Miraglia, D.,
Moore, B., Morie, J., Rickel, J., Thiébaux, M., Tuch, L.,
Whitney, R., Douglas, J.: Toward the holodeck: integrating
graphics, sound, character and story. In: 5th international
conference on Autonomous agents, pp.409--416. Montreal,
Quebec, Canada (2001)

[10] TVML. 2008.
DOI=http://www.nhk.or.jp/strl/tvml/english/what/index.html

[11] Young, R. M., Riedl, M. O., Branly, M. Jhala, A., Martin,
R.J., Saretto, C.J. 2004. An Architecture for Integrating Plan-
based Behavior Generation with Interactive Game
Environments. Journal of Game Development 1(1): 51-70.

