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Abstract. Recent network intrusion detection systems have employed machine 

learning and deep learning algorithms to defend against dynamically evolving 

network attacks. While most previous studies have focused on detecting attacks 

which can be determined based on a single time instant, few studies have paid 

attention to subsequence outliers, which require inspecting consecutive points in 

time for detection. To address this issue, this paper applies a time-series anomaly 

detection method in an unsupervised learning manner. To this end, we converted 

the UNSW-NB15 dataset into the time-series data. We carried out a preliminary 

evaluation to test the performance of the anomaly detection on the created time-

series network dataset as well as on a time-series dataset obtained from sensors. 

We analyze and discuss the results. 

Keywords: Time Series, Intrusion Detection System, Stacked RNN, Unsupervised 

Learning, Anomaly Detection 

1 Introduction 

Due to the rapid development and popularization of networks, security issues are also 

becoming an important issue. In order to solve these security issues, a network intrusion 

detection system (NIDS) has been widely used. A NIDS is a system that reads network 

packets and detects attack traffic and is known as an effective defense method against 

network security issues. During the last decade, network security systems have been 

developed by employing various time-series intrusion detection techniques. Pankaj et.al 

[21] propose a Long Short Term Memory Networks based Encoder-Decoder scheme 

for Anomaly Detection (EncDec-AD) that learns to reconstruct normal time-series 

behavior. Kyle et. al [22] demonstrate the effectiveness of LSTM and propose dynamic 

thresholding approach using LSTMs. Ding et. al [23] propose a real-time anomaly 

detection algorithm (RADM) based on Hierarchical Temporal Memory (HTM) and 

Bayesian Network (BN). Park et. al [24] introduced a long short-term memory-based 

variational autoencoder (LSTM-VAE) that fuses signals and reconstructs expected 

distribution. 
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Furthermore, unsupervised learning algorithms have been getting more attention 

owing to their advantage of training the models without labels during the training phase 

[11, 12]. In the unsupervised methods, attacks are generally detected by regarding them 

as outliers or anomalies. More details about outlier detection can be found in [1, 2, 10]. 

Time-series data mean the data annotated with time stamps, collected at regular time 

intervals. Depending on what is considered an outlier, time-series outliers are largely 

divided into two types: point outliers and subsequence outliers [2]. A point outlier 

means an outlier of which value is significantly different from the values of the 

surrounding data in the overall flow of data in time order as shown in Figure 1. In the 

figure, a point between 10 and 11 can be regarded as normal with a global perspective 

where similar data values exist between 21 and 22, but it is determined as an outlier 

considering the values of its neighbors with a local perspective [3]. These outliers can 

be determined relying on their characteristics at a specific time instant.  

 

 

Fig. 1. An illustration of a point outlier where samples between 10 and 11 are spiking, 

distinguished from their neighboring data.  

 

Fig. 2. An illustration of a subsequence outlier which is represented in the red box. The data 

values are within the minimum and the maximum of normal data, and yet the overall pattern is 

different from the rest.  
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Fig. 3. The model structure uses stacked RNN(GRU) models. For the sliding window, which is 

the time interval the model trains the specific pattern, set to 90. Using the output of previous 89 

data, the model predicts 90th data in the window. The numbers 79 denote the number of features 

excluding the time feature, 100 denotes the number of hidden cells of GRU, and 200 denotes the 

number of nodes of the FC (Fully Connected) layer.  

On the contrary, a subsequence outlier can be found only by inspecting consecutive 

instants in time. A subsequence outlier shows a pattern that deviates from the normal 

repetitive patents as shown in Figure 2. The points between 9 and 10 can be regarded 

as normal when simply looking at the numerical values, but it is determined as an outlier 

since its pattern deviated from the repeating patterns between 1 and 2, 5 and 6, 13 and 

14, and 17 and 18 [3]. Therefore, it is necessary to detect both outliers for building an 

intrusion detection system for practical domains. However, most previous studies have 

focused on detecting point outliers [6, 20]. 

To address this issue, this paper attempts to detect attacks using multivariate time-

series network data. Since time-series network datasets are rarely available, we created 

a time-series network dataset using the UNSW-NB15 network dataset [7, 13-16]. As 

an experimental model, we employ an unsupervised approach which contains a stacked 

RNN model, as was provided by the DACON’s HAICon2021 competition [17]. The 

approach showed a good performance, achieving F1 of 0.926 when the provided code 

was run on the HAI 2.0 dataset [4]. We carried out preliminary evaluations to test if 

this approach can be applied to the time-series network data. 

2 Model 

We use a stacked RNN(GRU) model [5] for learning time-series data in an 

unsupervised learning manner to detect attacks, which was provided as the baseline 

model for the HAICon2021 competition. This model uses a three-layer bidirectional 
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GRU with 100 hidden cells as illustrated in Figure 3. We use the experiment 

configuration that was set for the baseline model for comparison in the future research. 

We train the model for 32 epochs keeping the best model parameters, and the 

parameters that result in the best loss were chosen for evaluation. The window size was 

set as 90. 

3 Time-Series Anomaly Detection Datasets 

To evaluate the time-series anomaly detection system we selected two datasets, 

UNSW-NB15 dataset [7] and HAI 2.0 dataset [4]. The UNSW-NB15 dataset is 

converted into a time-series format.  

 

3.1 The UNSW-NB15 dataset 

The UNSW-NB15 dataset is widely used for benchmarking network intrusion 

detection systems. The dataset contains 9 network attack behaviors which are Fuzzers, 

Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms. 

The data are provided in two formats, raw traffic packet file and CSV file containing 

features extracted from captured network flows. We follow Ge et al. [8] to convert the 

packet data into a time-series format.  

 

Feature Extraction: The raw traffic packets from the UNSW-NB15 dataset were 

captured using the IXIA PerfectStorm tool and are provided in the PCAP file format 

[7]. We first select and extract packet fields from the PCAP file using the TShark 

analyzer tool. Details of the selected fields are shown in Table 1. 

Table 1. Detailed information of extracted fields from network packets. 

Feature Field detail 

frame frame.time_epoch, frame.len 

ip ip.src, ip.dst, ip.ttl 

tcp tcp.srcport, tcp.dstport, tcp.stream, tcp.len, tcp.checksum 

udp udp.srcport, udp.dstport, udp.stream, udp.checksum, udp.length 

 

 

The UNSW-NB15 CSV file contains the flow-based features of labeled flow data. 

The description of 49 features in the file are listed in Table 2. Each flow is labelled as 

0 for normal records and 1 for attacks. 

 

Packet Labelling: After extracting the features from each packet, we sort them in the 

chronological order using the frame.time_epoch feature, which indicates the time 

information of the packet. The packets in the PCAP file are labelled using the labels in 

the CSV file. It has information about packets transmitted and a label denoting normal 

or attack. A label can be created by using the label feature value of the flow which 

contains the packet. 
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Table 2. Description of features. 

Number Description Number Description Number Description 

1 srcip 18 Dpkts 35 ackdat 

2 sport 19 swin 36 is_sm_ips_ports 

3 dstip 20 dwin 37 ct_state_ttl 

4 dsport 21 stcpb 38 ct_flw_http_mthd 

5 proto 22 dtcpb 39 is_ftp_login 

6 state 23 smeansz 40 ct_ftp_cmd 

7 dur 24 dmeansz 41 ct_srv_src 

8 sbytes 25 trans_depth 42 ct_srv_dst 

9 dbytes 26 res_bdy_len 43 ct_dst_ltm 

10 sttl 27 Sjit 44 ct_src_ ltm 

11 dttl 28 Djit 45 ct_src_dport_ltm 

12 sloss 29 Stime 46 ct_dst_sport_ltm 

13 dloss 30 Ltime 47 ct_dst_src_ltm 

14 service 31 Sintpkt 48 attack_cat 

15 Sload 32 Dintpkt 49 Label 

16 Dload 33 tcprtt   

17 Spkts 34 synack   

 

 

The process of determining whether a particular packet belongs to a flow is as follows. 

First, frame.time_epoch of the PCAP file is matched with the Stime value (the 29th field) 

and the Ltime value (the 30th field) of the CSV file. Among the data matched with the 

packet, we extracted the data that matches the ip.src and ip.dst of the PCAP with the 

first field srcip and the third field dstip of the CSV file. Finally, for TCP, we matched 

tcp.srcport and tcp.dstport in the PCAP file, and in the case of UDP, udp.srcport and 

udp.dstport in the PCAP file with the 2nd field sport, and 4th field dsport of the CSV 

file, and the label of the matched file becomes the label of the corresponding PCAP file. 

If there is no matching data, it is infeasible to determine whether it is normal or an 

attack, hence, we removed the corresponding packet. Tcp information and udp 

information are integrated into one common information, and then in the case of ip.src 

and ip.dst, they are used up to map the PCAP file and the CSV information and then 

removed. Finally, in the created time-series network data, there are 9 features: 

frame.time_epoch, frame.len, ip.ttl, srcport, dstport, stream, checksum, len, and label. 

We removed the label from the data for train, validation and test, since we apply 

unsupervised learning to dataset, we only used the label for evaluation for validation 

and test. In total, there are 295,342 time-series data with 277,828 normal data and 

17,514 attack data. 

 

Preprocessing: For the source port and destination port features, the port numbers 

greater than 49,152 are labelled as 2, the numbers greater than 1,024 are labelled to 1, 
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and the numbers lower than 1,024 are labelled to 0 since they are divided to dynamic 

port, registered port and well-known port. Then numerical features were scaled to fit 0 

to 1 using a min-max scaler. 

 

3.2 The HAI 2.0 dataset 

The HAI 2.0 dataset is a time-series dataset created for attack detection in cyber-

physical systems such as railways, water-treatment, and power plants [4]. The data were 

collected from the four processes: the boiler process, the turbine process, the water-

treatment process, and the HIL simulation. Data samples were collected every second 

and consist of 80 features. Normal data were collected for 7 continuous days, and the 

attack data include 38 different attack types. The data are sorted in the increasing order 

of time feature in the format of “yyyy-MM-dd hh:mm:ss.”. Other features contain 

information associated with the processes such as temperature setpoint, water level 

setpoint and motor speed. 

 

Preprocessing: To preprocess the data, the timestamp features were dropped, and the 

numerical features were scaled with a min-max scaler similar to UNSW-NB15 [17]. 

For some features, of which maximum value and minimum value are the same, we set 

these features as 0. After scaling features, we applied an exponential weighted function 

in python function “ewm” with 0.9 for alpha for noise smoothing. 

 

4 Experiments 

We compare and analyze the anomaly detection system performance using the 

UNSW-NB15 and the HAI 2.0 dataset. We convert attack detection into an anomaly 

detection problem by assuming the attack to be anomalous. 

 

4.1 Data Preparation 

For both datasets, an unsupervised learning was conducted to train the model using 

only normal data. We divided the time-series network dataset into training, validation, 

and test datasets in a ratio of 8:1:1. Then, since the attack data is also included in the 

training datasets for the time-series network data, we removed attack data in the training 

datasets. The number of instances for each dataset is presented in Table 3. 

Table 3. Simple statistics of processed UNSW-NB15 dataset. 

 Training Validation Test 

Normal 226,240 25,706 25,882 

Attack 0 3,828 3,652 

Total 226,240 29,534 29,534 

 

However, there are no labels in the test dataset of  HAI 2.0 dataset. For the evaluation, 

we divided the validation dataset, which has labels, into the validation dataset(first 50%) 
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and the test dataset(last 50%). Table 4 shows the simple statistics of the processed 

dataset. 

 

Table 4. Simple statistics of the processed HAI 2.0 dataset. 

 Training Validation Test 

Normal 965,603 21,060 21,512 

Attack 0 540 89 

Total 965,603 21,600 21,601 

 

 

4.2 Training 

As described in Figure 3, the model is trained to predict the last sample in the given 

time window when the preceding samples are given. In order to predict whether the last 

sample is an anomaly the model is only trained with windows containing normal 

samples. Theoretically the model will predict the last sample as close as possible to the 

normal sample given the preceding sample. Therefore, if the difference between the 

prediction and true last sample is significant, we consider the last sample to be an 

anomaly. We predict the last sample of the window as an anomaly if the difference is 

greater than a predetermined threshold. The parameters for training the model are 

provided in Table 5. The stride means how much data to skip during training. 

Table 5. Model parameters and configurations. 

parameter value/name parameter value/name 

n_hidden 100 n_layers 3 

batch_size 512 num_epochs 32 

window_size 90 stride 10 

loss MSE optimizer AdamW 

scheduler X dropout X 

 

 

4.3 The Evaluation Metrics 

There are various evaluation metrics such as precision, recall, and F1 that are 

frequently used. However, the evaluation metric of time-series data needs to consider 

various factors such as the diversity of detected attacks and the accuracy of detection 

as illustrated in Figure 4. 
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Fig. 4. Illustration of time-series anomaly detection where the two different models Model 1 and 

Model 2 are used, modified from [18]. The X-axis indicates time, and A indicates the time slots 

where an anomaly exists. M1 indicates the anomalies that Model 1 detects, and M2 indicates the 

anomalies that Model 2 detects. 

For example, as shown in Figure 4, Model 2 detects 3 anomaly instances between 0 

and 3, and Model 1 detects 2 instances, one between 1 and 2 and the other between 6 

and 7. In terms of accuracy, Model 2 outperforms Model 1. However, considering that 

Model 2 does not detect anomalies between 6 and 8 time slots, it is hard to determine 

which model performs better. TaPR [19] is an evaluation metric that considers these 

factors. TaP, which corresponds to precision, is an evaluation metric indicating whether 

the prediction finds outliers with less false positives. TaR, which corresponds to recall, 

is an evaluation metric indicating the diversity of the anomalies. Using the detection 

score TaPd (resp. TaRd) and the portion score TaPp (resp. TaRp), TaP and TaR can be 

calculated as follows: 

        TaP = 𝛼 ×TaPd + (1 - 𝛼) × TaPp                             (1) 

       TaR = 𝛼 ×TaRd + (1 - 𝛼) × TaRp                                (2) 

where 𝛼 controls the ratio of TaPd (resp. TaRd) and TaPp (resp. TaRp), and its value is 

between 0 and 1 [9]. 

5 The Experiment Results 

This section reports the evaluation results. The figures below show the error and attack 

distribution of the time-series network data created in this paper and the HAI 2.0 data, 

respectively. 
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Fig. 5. Distribution of error and attack in validation dataset of the time-series network dataset. 

The x-axis indicates the order of the data, and the y-axis indicates the absolute difference of 

(answer - guess). The orange line indicates the attack position, and the blue line indicates the 

size of the error. The red line is the threshold value that separates the boundary between normal 

and attack. 

 

Fig. 6. Distribution of error and attack in validation dataset of the HAI 2.0 dataset. The x-axis 

indicates the order of the data, and the y-axis indicates the absolute difference of (answer - 

guess). The orange line indicates the attack position, and the blue line indicates the size of the 

error. The red line is the threshold value that separates the boundary between normal and 

attack. 

Using the experimental results of validation data, the threshold was set to 0.04 for the 

HAI 2.0 data, and the threshold was set to 0.2 for time-series network data. The two 

dataset show different properties. In the HAI 2.0 data, the attack data tends to be greater 

than the normal data, while in the time-series network data values are relatively evenly 

distributed. In addition, in the case of the HAI 2.0 dataset, the number of normal data 

is overwhelmingly larger than that of attack data, unlike the time-series network data. 

As the evaluation metric, we use TaPR described in Section 3.4. The analyses of the 

results are shown in the following tables. 
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Table 6. Detection performance results of UNSW-NB15 data. 

Evaluation metric UNSW-NB15 data 

F1 0.737 

TaP 0.731 

TaR 0.743 

 

Table 7. Detection performance results of HAI 2.0 data. 

Evaluation metric HAI 2.0 data 

F1 0.926 

TaP 0.861 

TaR 1.000 

 

 

The F1 scores are 0.926 for HAI 2.0 data and 0.737 for time-series network data. The 

TaP and TaR scores are 0.861 and 1.000 for HAI 2.0 data, and 0.731 and 0.743 for the 

time-series network data, respectively. This indicates that the model performs better 

with the HAI 2.0 dataset which contains sensor data.  

There are two main factors that account for the poor performance of the time-series 

network dataset. First, the number of features in the time-series network dataset may 

be insufficient. In the case of the HAI 2.0 dataset, there are about 80 features, in the 

case of the time-series network data, only about 10 features were used, making it 

difficult to determine its anomaly. The other reason is that time-series network data are 

not complete time-series. In the case of HAI 2.0 dataset, data is generated every second, 

but in the case of the time-series network dataset, since packets are not transmitted at a 

specific period, it is difficult to generate data at regular intervals. Moreover, since the 

attack data is removed from the training data of the time-series network data to learn 

the normal data only, the time information becomes more irregular.  

6 Conclusion 

While unsupervised deep learning models have shown great performances in detecting 

attacks that are point outliers, little has been researched on detecting subsequence 

outliers. For building a NIDS which can detect subsequence outliers, we first created 

the time-series network data by processing the UNSW-NB15 dataset. We carried out 

preliminary experiments using both the HAI 2.0 dataset and the time-series network 

dataset we created, using a stacked RNN model in an unsupervised manner. The results 

show that the model performs better with run on the HAI 2.0 dataset than tested on the 

time-series network dataset. The model achieved F1 scores of 0.926 for the HAI 2.0 

data and 0.737 for the time-series network data. The TaP and TaR scores are 0.861 and 

1.000 for the HAI 2.0 data, and 0.731 and 0.743 for the time-series network data. The 

lack of data and insufficient features of the time-series network data can account for its 

poor performance. We expect that more studies on time-series network data attack 

detection in the future will help solve these shortcomings. 
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