
Towards Building Intrusion Detection Systems for

Multivariate Time-Series Data

ChangMin Seong1, YoungRok Song2, Jiwung Hyun2, Yun-Gyung Cheong2

1Department of Computer Software, Sungkyunkwan University, South Korea

2Department of Artificial Intelligence, Sungkyunkwan University, South Korea

Abstract. Recent network intrusion detection systems have employed machine

learning and deep learning algorithms to defend against dynamically evolving

network attacks. While most previous studies have focused on detecting attacks

which can be determined based on a single time instant, few studies have paid

attention to subsequence outliers, which require inspecting consecutive points in

time for detection. To address this issue, this paper applies a time-series anomaly

detection method in an unsupervised learning manner. To this end, we converted

the UNSW-NB15 dataset into the time-series data. We carried out a preliminary

evaluation to test the performance of the anomaly detection on the created time-

series network dataset as well as on a time-series dataset obtained from sensors.

We analyze and discuss the results.

Keywords: Time Series, Intrusion Detection System, Stacked RNN, Unsupervised

Learning, Anomaly Detection

1 Introduction

Due to the rapid development and popularization of networks, security issues are also

becoming an important issue. In order to solve these security issues, a network intrusion

detection system (NIDS) has been widely used. A NIDS is a system that reads network

packets and detects attack traffic and is known as an effective defense method against

network security issues. During the last decade, network security systems have been

developed by employing various time-series intrusion detection techniques. Pankaj et.al

[21] propose a Long Short Term Memory Networks based Encoder-Decoder scheme

for Anomaly Detection (EncDec-AD) that learns to reconstruct normal time-series

behavior. Kyle et. al [22] demonstrate the effectiveness of LSTM and propose dynamic

thresholding approach using LSTMs. Ding et. al [23] propose a real-time anomaly

detection algorithm (RADM) based on Hierarchical Temporal Memory (HTM) and

Bayesian Network (BN). Park et. al [24] introduced a long short-term memory-based

variational autoencoder (LSTM-VAE) that fuses signals and reconstructs expected

distribution.

2

Furthermore, unsupervised learning algorithms have been getting more attention

owing to their advantage of training the models without labels during the training phase

[11, 12]. In the unsupervised methods, attacks are generally detected by regarding them

as outliers or anomalies. More details about outlier detection can be found in [1, 2, 10].

Time-series data mean the data annotated with time stamps, collected at regular time

intervals. Depending on what is considered an outlier, time-series outliers are largely

divided into two types: point outliers and subsequence outliers [2]. A point outlier

means an outlier of which value is significantly different from the values of the

surrounding data in the overall flow of data in time order as shown in Figure 1. In the

figure, a point between 10 and 11 can be regarded as normal with a global perspective

where similar data values exist between 21 and 22, but it is determined as an outlier

considering the values of its neighbors with a local perspective [3]. These outliers can

be determined relying on their characteristics at a specific time instant.

Fig. 1. An illustration of a point outlier where samples between 10 and 11 are spiking,

distinguished from their neighboring data.

Fig. 2. An illustration of a subsequence outlier which is represented in the red box. The data

values are within the minimum and the maximum of normal data, and yet the overall pattern is

different from the rest.

3

Fig. 3. The model structure uses stacked RNN(GRU) models. For the sliding window, which is

the time interval the model trains the specific pattern, set to 90. Using the output of previous 89

data, the model predicts 90th data in the window. The numbers 79 denote the number of features

excluding the time feature, 100 denotes the number of hidden cells of GRU, and 200 denotes the

number of nodes of the FC (Fully Connected) layer.

On the contrary, a subsequence outlier can be found only by inspecting consecutive

instants in time. A subsequence outlier shows a pattern that deviates from the normal

repetitive patents as shown in Figure 2. The points between 9 and 10 can be regarded

as normal when simply looking at the numerical values, but it is determined as an outlier

since its pattern deviated from the repeating patterns between 1 and 2, 5 and 6, 13 and

14, and 17 and 18 [3]. Therefore, it is necessary to detect both outliers for building an

intrusion detection system for practical domains. However, most previous studies have

focused on detecting point outliers [6, 20].

To address this issue, this paper attempts to detect attacks using multivariate time-

series network data. Since time-series network datasets are rarely available, we created

a time-series network dataset using the UNSW-NB15 network dataset [7, 13-16]. As

an experimental model, we employ an unsupervised approach which contains a stacked

RNN model, as was provided by the DACON’s HAICon2021 competition [17]. The

approach showed a good performance, achieving F1 of 0.926 when the provided code

was run on the HAI 2.0 dataset [4]. We carried out preliminary evaluations to test if

this approach can be applied to the time-series network data.

2 Model

We use a stacked RNN(GRU) model [5] for learning time-series data in an

unsupervised learning manner to detect attacks, which was provided as the baseline

model for the HAICon2021 competition. This model uses a three-layer bidirectional

4

GRU with 100 hidden cells as illustrated in Figure 3. We use the experiment

configuration that was set for the baseline model for comparison in the future research.

We train the model for 32 epochs keeping the best model parameters, and the

parameters that result in the best loss were chosen for evaluation. The window size was

set as 90.

3 Time-Series Anomaly Detection Datasets

To evaluate the time-series anomaly detection system we selected two datasets,

UNSW-NB15 dataset [7] and HAI 2.0 dataset [4]. The UNSW-NB15 dataset is

converted into a time-series format.

3.1 The UNSW-NB15 dataset

The UNSW-NB15 dataset is widely used for benchmarking network intrusion

detection systems. The dataset contains 9 network attack behaviors which are Fuzzers,

Analysis, Backdoors, DoS, Exploits, Generic, Reconnaissance, Shellcode, and Worms.

The data are provided in two formats, raw traffic packet file and CSV file containing

features extracted from captured network flows. We follow Ge et al. [8] to convert the

packet data into a time-series format.

Feature Extraction: The raw traffic packets from the UNSW-NB15 dataset were

captured using the IXIA PerfectStorm tool and are provided in the PCAP file format

[7]. We first select and extract packet fields from the PCAP file using the TShark

analyzer tool. Details of the selected fields are shown in Table 1.

Table 1. Detailed information of extracted fields from network packets.

Feature Field detail

frame frame.time_epoch, frame.len

ip ip.src, ip.dst, ip.ttl

tcp tcp.srcport, tcp.dstport, tcp.stream, tcp.len, tcp.checksum

udp udp.srcport, udp.dstport, udp.stream, udp.checksum, udp.length

The UNSW-NB15 CSV file contains the flow-based features of labeled flow data.

The description of 49 features in the file are listed in Table 2. Each flow is labelled as

0 for normal records and 1 for attacks.

Packet Labelling: After extracting the features from each packet, we sort them in the

chronological order using the frame.time_epoch feature, which indicates the time

information of the packet. The packets in the PCAP file are labelled using the labels in

the CSV file. It has information about packets transmitted and a label denoting normal

or attack. A label can be created by using the label feature value of the flow which

contains the packet.

5

Table 2. Description of features.

Number Description Number Description Number Description

1 srcip 18 Dpkts 35 ackdat

2 sport 19 swin 36 is_sm_ips_ports

3 dstip 20 dwin 37 ct_state_ttl

4 dsport 21 stcpb 38 ct_flw_http_mthd

5 proto 22 dtcpb 39 is_ftp_login

6 state 23 smeansz 40 ct_ftp_cmd

7 dur 24 dmeansz 41 ct_srv_src

8 sbytes 25 trans_depth 42 ct_srv_dst

9 dbytes 26 res_bdy_len 43 ct_dst_ltm

10 sttl 27 Sjit 44 ct_src_ ltm

11 dttl 28 Djit 45 ct_src_dport_ltm

12 sloss 29 Stime 46 ct_dst_sport_ltm

13 dloss 30 Ltime 47 ct_dst_src_ltm

14 service 31 Sintpkt 48 attack_cat

15 Sload 32 Dintpkt 49 Label

16 Dload 33 tcprtt

17 Spkts 34 synack

The process of determining whether a particular packet belongs to a flow is as follows.

First, frame.time_epoch of the PCAP file is matched with the Stime value (the 29th field)

and the Ltime value (the 30th field) of the CSV file. Among the data matched with the

packet, we extracted the data that matches the ip.src and ip.dst of the PCAP with the

first field srcip and the third field dstip of the CSV file. Finally, for TCP, we matched

tcp.srcport and tcp.dstport in the PCAP file, and in the case of UDP, udp.srcport and

udp.dstport in the PCAP file with the 2nd field sport, and 4th field dsport of the CSV

file, and the label of the matched file becomes the label of the corresponding PCAP file.

If there is no matching data, it is infeasible to determine whether it is normal or an

attack, hence, we removed the corresponding packet. Tcp information and udp

information are integrated into one common information, and then in the case of ip.src

and ip.dst, they are used up to map the PCAP file and the CSV information and then

removed. Finally, in the created time-series network data, there are 9 features:

frame.time_epoch, frame.len, ip.ttl, srcport, dstport, stream, checksum, len, and label.

We removed the label from the data for train, validation and test, since we apply

unsupervised learning to dataset, we only used the label for evaluation for validation

and test. In total, there are 295,342 time-series data with 277,828 normal data and

17,514 attack data.

Preprocessing: For the source port and destination port features, the port numbers

greater than 49,152 are labelled as 2, the numbers greater than 1,024 are labelled to 1,

6

and the numbers lower than 1,024 are labelled to 0 since they are divided to dynamic

port, registered port and well-known port. Then numerical features were scaled to fit 0

to 1 using a min-max scaler.

3.2 The HAI 2.0 dataset

The HAI 2.0 dataset is a time-series dataset created for attack detection in cyber-

physical systems such as railways, water-treatment, and power plants [4]. The data were

collected from the four processes: the boiler process, the turbine process, the water-

treatment process, and the HIL simulation. Data samples were collected every second

and consist of 80 features. Normal data were collected for 7 continuous days, and the

attack data include 38 different attack types. The data are sorted in the increasing order

of time feature in the format of “yyyy-MM-dd hh:mm:ss.”. Other features contain

information associated with the processes such as temperature setpoint, water level

setpoint and motor speed.

Preprocessing: To preprocess the data, the timestamp features were dropped, and the

numerical features were scaled with a min-max scaler similar to UNSW-NB15 [17].

For some features, of which maximum value and minimum value are the same, we set

these features as 0. After scaling features, we applied an exponential weighted function

in python function “ewm” with 0.9 for alpha for noise smoothing.

4 Experiments

We compare and analyze the anomaly detection system performance using the

UNSW-NB15 and the HAI 2.0 dataset. We convert attack detection into an anomaly

detection problem by assuming the attack to be anomalous.

4.1 Data Preparation

For both datasets, an unsupervised learning was conducted to train the model using

only normal data. We divided the time-series network dataset into training, validation,

and test datasets in a ratio of 8:1:1. Then, since the attack data is also included in the

training datasets for the time-series network data, we removed attack data in the training

datasets. The number of instances for each dataset is presented in Table 3.

Table 3. Simple statistics of processed UNSW-NB15 dataset.

 Training Validation Test

Normal 226,240 25,706 25,882

Attack 0 3,828 3,652

Total 226,240 29,534 29,534

However, there are no labels in the test dataset of HAI 2.0 dataset. For the evaluation,

we divided the validation dataset, which has labels, into the validation dataset(first 50%)

7

and the test dataset(last 50%). Table 4 shows the simple statistics of the processed

dataset.

Table 4. Simple statistics of the processed HAI 2.0 dataset.

 Training Validation Test

Normal 965,603 21,060 21,512

Attack 0 540 89

Total 965,603 21,600 21,601

4.2 Training

As described in Figure 3, the model is trained to predict the last sample in the given

time window when the preceding samples are given. In order to predict whether the last

sample is an anomaly the model is only trained with windows containing normal

samples. Theoretically the model will predict the last sample as close as possible to the

normal sample given the preceding sample. Therefore, if the difference between the

prediction and true last sample is significant, we consider the last sample to be an

anomaly. We predict the last sample of the window as an anomaly if the difference is

greater than a predetermined threshold. The parameters for training the model are

provided in Table 5. The stride means how much data to skip during training.

Table 5. Model parameters and configurations.

parameter value/name parameter value/name

n_hidden 100 n_layers 3

batch_size 512 num_epochs 32

window_size 90 stride 10

loss MSE optimizer AdamW

scheduler X dropout X

4.3 The Evaluation Metrics

There are various evaluation metrics such as precision, recall, and F1 that are

frequently used. However, the evaluation metric of time-series data needs to consider

various factors such as the diversity of detected attacks and the accuracy of detection

as illustrated in Figure 4.

8

Fig. 4. Illustration of time-series anomaly detection where the two different models Model 1 and

Model 2 are used, modified from [18]. The X-axis indicates time, and A indicates the time slots

where an anomaly exists. M1 indicates the anomalies that Model 1 detects, and M2 indicates the

anomalies that Model 2 detects.

For example, as shown in Figure 4, Model 2 detects 3 anomaly instances between 0

and 3, and Model 1 detects 2 instances, one between 1 and 2 and the other between 6

and 7. In terms of accuracy, Model 2 outperforms Model 1. However, considering that

Model 2 does not detect anomalies between 6 and 8 time slots, it is hard to determine

which model performs better. TaPR [19] is an evaluation metric that considers these

factors. TaP, which corresponds to precision, is an evaluation metric indicating whether

the prediction finds outliers with less false positives. TaR, which corresponds to recall,

is an evaluation metric indicating the diversity of the anomalies. Using the detection

score TaPd (resp. TaRd) and the portion score TaPp (resp. TaRp), TaP and TaR can be

calculated as follows:

 TaP = 𝛼 ×TaPd + (1 - 𝛼) × TaPp (1)

 TaR = 𝛼 ×TaRd + (1 - 𝛼) × TaRp (2)

where 𝛼 controls the ratio of TaPd (resp. TaRd) and TaPp (resp. TaRp), and its value is

between 0 and 1 [9].

5 The Experiment Results

This section reports the evaluation results. The figures below show the error and attack

distribution of the time-series network data created in this paper and the HAI 2.0 data,

respectively.

9

Fig. 5. Distribution of error and attack in validation dataset of the time-series network dataset.

The x-axis indicates the order of the data, and the y-axis indicates the absolute difference of

(answer - guess). The orange line indicates the attack position, and the blue line indicates the

size of the error. The red line is the threshold value that separates the boundary between normal

and attack.

Fig. 6. Distribution of error and attack in validation dataset of the HAI 2.0 dataset. The x-axis

indicates the order of the data, and the y-axis indicates the absolute difference of (answer -

guess). The orange line indicates the attack position, and the blue line indicates the size of the

error. The red line is the threshold value that separates the boundary between normal and

attack.

Using the experimental results of validation data, the threshold was set to 0.04 for the

HAI 2.0 data, and the threshold was set to 0.2 for time-series network data. The two

dataset show different properties. In the HAI 2.0 data, the attack data tends to be greater

than the normal data, while in the time-series network data values are relatively evenly

distributed. In addition, in the case of the HAI 2.0 dataset, the number of normal data

is overwhelmingly larger than that of attack data, unlike the time-series network data.

As the evaluation metric, we use TaPR described in Section 3.4. The analyses of the

results are shown in the following tables.

10

Table 6. Detection performance results of UNSW-NB15 data.

Evaluation metric UNSW-NB15 data

F1 0.737

TaP 0.731

TaR 0.743

Table 7. Detection performance results of HAI 2.0 data.

Evaluation metric HAI 2.0 data

F1 0.926

TaP 0.861

TaR 1.000

The F1 scores are 0.926 for HAI 2.0 data and 0.737 for time-series network data. The

TaP and TaR scores are 0.861 and 1.000 for HAI 2.0 data, and 0.731 and 0.743 for the

time-series network data, respectively. This indicates that the model performs better

with the HAI 2.0 dataset which contains sensor data.

There are two main factors that account for the poor performance of the time-series

network dataset. First, the number of features in the time-series network dataset may

be insufficient. In the case of the HAI 2.0 dataset, there are about 80 features, in the

case of the time-series network data, only about 10 features were used, making it

difficult to determine its anomaly. The other reason is that time-series network data are

not complete time-series. In the case of HAI 2.0 dataset, data is generated every second,

but in the case of the time-series network dataset, since packets are not transmitted at a

specific period, it is difficult to generate data at regular intervals. Moreover, since the

attack data is removed from the training data of the time-series network data to learn

the normal data only, the time information becomes more irregular.

6 Conclusion

While unsupervised deep learning models have shown great performances in detecting

attacks that are point outliers, little has been researched on detecting subsequence

outliers. For building a NIDS which can detect subsequence outliers, we first created

the time-series network data by processing the UNSW-NB15 dataset. We carried out

preliminary experiments using both the HAI 2.0 dataset and the time-series network

dataset we created, using a stacked RNN model in an unsupervised manner. The results

show that the model performs better with run on the HAI 2.0 dataset than tested on the

time-series network dataset. The model achieved F1 scores of 0.926 for the HAI 2.0

data and 0.737 for the time-series network data. The TaP and TaR scores are 0.861 and

1.000 for the HAI 2.0 data, and 0.731 and 0.743 for the time-series network data. The

lack of data and insufficient features of the time-series network data can account for its

poor performance. We expect that more studies on time-series network data attack

detection in the future will help solve these shortcomings.

11

Acknowledgement

This work was supported by Institute of Information & communications Technology

Planning & Evaluation (IITP) grant funded by the Korea government(MSIT) (No.2020-

0-00952, Development of 5G Edge Security Technology for Ensuring 5G+ Service

Stability and Availability).

References

1. Braei, Mohammad and Sebastian Wagner. “Anomaly Detection in Univariate Time-series:

A Survey on the State-of-the-Art.” ArXiv abs/2004.00433 (2020): n. pag.
2. Bl'azquez-Garc'ia, Ane et al. “A Review on Outlier/Anomaly Detection in Time Series

Data.” ACM Computing Surveys (CSUR) 54 (2021): 1 - 33.
3. “Anomaly Detection in Time Series: 2021”, neptune.ai, last modified July 19th, 2021,

accessed September 5th, 2021, https://neptune.ai/blog/anomaly-detection-in-time-series.

4. Hyuk-ki Shin, Woomyo Lee, Jeong-Han Yun, and Hyoungchun Kim, "HAI 1.0: HIL-based

Augmented ICS Security Dataset", 13th USENIX Workshop on Cyber Security

Experimentation and Test, 2020.
5. Cho, Kyunghyun et al. “Learning Phrase Representations using RNN Encoder–Decoder for

Statistical Machine Translation.” EMNLP (2014).

6. Sandosh, S., V. Govindasamy, and G. Akila. "Enhanced intrusion detection system via agent

clustering and classification based on outlier detection." Peer-to-Peer Networking and

Applications 13.3 (2020): 1038-1045.
7. Moustafa, Nour, and Jill Slay. "UNSW-NB15: a comprehensive data set for network

intrusion detection systems (UNSW-NB15 network data set)." Military Communications

and Information Systems Conference (MilCIS), 2015. IEEE, 2015.

8. Ge, Mengmeng et al. “Deep Learning-Based Intrusion Detection for IoT Networks.” 2019

IEEE 24th Pacific Rim International Symposium on Dependable Computing (PRDC)

(2019): 256-25609.
9. Hwang, Won-Seok & Yun, Jeong-Han & Kim, Jonguk & Kim, Hyoung. (2019). Time-Series

Aware Precision and Recall for Anomaly Detection: Considering Variety of Detection

Result and Addressing Ambiguous Labeling. 2241-2244. 10.1145/3357384.3358118.
10. M. Gupta, J. Gao, C. C. Aggarwal and J. Han, "Outlier Detection for Temporal Data: A

Survey," in IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 9, pp.

2250-2267, Sept. 2014, doi: 10.1109/TKDE.2013.184.

11. Song, Y.; Hyun, S.; Cheong, Y.G. A Systematic Approach to Building Autoencoders for

Intrusion Detection. In Silicon Valley Cybersecurity Conference, SVCC 2020, San Jose,

CA, USA, 17–19 December 2020; Park, Y., Jadav, D., Austin, T., Eds.; Communications in

Computer and Information Science; Springer: Cham, Switzerland, 2021; Volume 1383.

12. Song, Youngrok, Sangwon Hyun, and Yun-Gyung Cheong. 2021. "Analysis of

Autoencoders for Network Intrusion Detection" Sensors 21, no. 13: 4294.

https://doi.org/10.3390/s21134294.

13. Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection Systems:

Statistical analysis of the UNSW-NB15 dataset and the comparison with the KDD99

dataset." Information Security Journal: A Global Perspective (2016): 1-14.

14. Moustafa, Nour, et al. "Novel geometric area analysis technique for anomaly detection using

trapezoidal area estimation on large-scale networks." IEEE Transactions on Big Data (2017).

15. Moustafa, Nour, et al. "Big data analytics for intrusion detection system: statistical decision-

making using finite dirichlet mixture models." Data Analytics and Decision Support for

Cybersecurity. Springer, Cham, 2017. 127-156.

https://neptune.ai/blog/anomaly-detection-in-time-series

12

16. Sarhan, Mohanad, Siamak Layeghy, Nour Moustafa, and Marius Portmann. NetFlow

Datasets for Machine Learning-Based Network Intrusion Detection Systems. In Big Data

Technologies and Applications: 10th EAI International Conference, BDTA 2020, and 13th

EAI International Conference on Wireless Internet, WiCON 2020, Virtual Event, December

11, 2020, Proceedings (p. 117). Springer Nature.

17. “HAI DataSet Baseline Model”, DACON, last modified August 2nd, 2021, accessed

September 5th, 2021,

https://dacon.io/competitions/official/235757/codeshare/3009?page=1&dtype=recent.

18. “[Paper Review] Evaluation Metrics for Time Series Anomaly Detection”, DSBA, last

modified September 23th, 2020, accessed September 6th, 2021,

http://dsba.korea.ac.kr/seminar/?pageid=3&mod=document&uid=1332.

19. Won-seok Hwang, Jeong-Han Yun, Jonguk Kim, and Hyoungchun Kim, "Time-Series

Aware Precision and Recall for Anomaly Detection - Considering Variety of Detection

Result and Addressing Ambiguous Labeling", CIKM'19: Proceedings of the 28th ACM

International Conference on Information and Knowledge Management, 2019.

20. Devan, Preethi, and Neelu Khare. "An efficient XGBoost–DNN-based classification model

for network intrusion detection system." Neural Computing and Applications (2020): 1-16.

21. Malhotra, Pankaj, et al. "LSTM-based encoder-decoder for multi-sensor anomaly

detection." arXiv preprint arXiv:1607.00148 (2016).

22. Hundman, Kyle, et al. "Detecting spacecraft anomalies using lstms and nonparametric

dynamic thresholding." Proceedings of the 24th ACM SIGKDD international conference

on knowledge discovery & data mining. 2018.

23. Ding, Nan, et al. "Multivariate-time-series-driven real-time anomaly detection based on

bayesian network." Sensors 18.10 (2018): 3367.

24. Park, Daehyung, Yuuna Hoshi, and Charles C. Kemp. "A multimodal anomaly detector for

robot-assisted feeding using an lstm-based variational autoencoder." IEEE Robotics and

Automation Letters 3.3 (2018): 1544-1551.

https://dacon.io/competitions/official/235757/codeshare/3009?page=1&dtype=recent
http://dsba.korea.ac.kr/seminar/?pageid=3&mod=document&uid=1332

