
Improving a Graph-to-Tree Model for Solving Math
Word Problems

Hyunju Kim∗†, Junwon Hwang∗‡, Taewoo Yoo∗§, and Yun-Gyung Cheong∗¶
∗SungKyunKwan University (SKKU), Suwon, South Korea

†ESTsoft, Seoul, South Korea
†julia981028@gmail.com, ‡nuclear1221@gmail.com, §woo990307@naver.com, ¶aimecca@skku.edu

Abstract—In the area of Math Word Problem (MWP), var-
ious methods based on deep learning technology have been
actively researched. Graph-to-Tree (Graph2Tree) is one of those
methods which uses a graph-based encoder and a tree-based
decoder to understand the word problem and to generate a
valid equation. This method is proven to be well-performed by
achieving state-of-the-art on several benchmarks. However, on the
benchmark of SVAMP, recent methods including Sequence-to-
Sequence (Seq2Seq), Goal-driven Tree-Structured MWP Solver
(GTS), and Graph2Tree performs poorly, unable to cope with
several variation types that requires natural language compre-
hension capability. In this paper, we propose an improved version
of Graph2Tree which considers the characteristics of natural
language to understand the word problems. On top of the original
Graph2Tree model, we additionally build Dependency Graph and
enhance the Quantity Cell Graph to Softly Expanded Quantity
Cell Graph. This helps a graph-based encoder to capture the
relationship among words. Also, we introduce question embedding
for the tree-based decoder to generate equation based on the
question given as input. We conduct experiments to evaluate
our model against the original Graph2Tree model on three
available datasets: MAWPS, ASDiv-A, and SVAMP. We also
present case studies to qualitatively examine the effectiveness
of the methods and showed that our methods have improved the
original Graph2Tree model.

I. INTRODUCTION

Math Word Problem (MWP) is a task of deriving math-
ematical equations and solutions when a question is given
as the short text. To solve this task, strong natural lan-
guage understanding ability, the world knowledge, and domain
knowledge are needed. This is because the machine needs
to fully understand the information that the question implies
and needs to know what that question is asking machine to
solve. Also, to derive the equation, machine needs to capture
the relation between numbers and natural language and needs
to extract relevant information that is needed to derive an
equation to obtain the final solution for the given problem.

Up until now, there have been a lot of approaches trying
to solve MWPs. Wang et al. [1] applied a vanilla sequence-
to-sequence (seq2seq) model which maps a mathematical
question to a solution equation. Encountering limitation to
express the equation using only sequence, researchers made
attempts to use the tree expressions [1], [2] and tree-based
decoders [3], [4].

Following Graph Convolutional Network (GCN) [6], graph-
based neural networks [8]–[11] showed good performance

TABLE I
AN EXAMPLE OF MATH WORD PROBLEM

Problem Body
James want to distribute 190 apples to
4 students equally. When he took out
the apples, 126 of them were rotten.

Question How many apples can each person have?
Answer 16
Equation (190 - 126) / 4

on various Natural Language Processing (NLP) tasks. For
MWP task also, encoder-decoder models with graph network
[12] and graph transformer based models [13], [14] have
been proposed. Especially, Graph-to-Tree (Graph2Tree) model
developed by Zhang et al. [15] combine a graph transformer
and a tree-based decoder and achieved the state-of-the-art in
various MWP benchmarks.

To evaluate the performance of the methods on MWP,
various datasets including Math23K [16], MAWPS [17], and
ASDiv [18] are used. The data contain mathematical problems,
equations, and solutions (see table I for example). Recently,
Patel et al. [19] tested several models including the state-of-
the-art model, Graph2Tree, and found out that the previous
datasets are not robust enough to serve as the benchmark
datasets for evaluating the performance of the MWP task.
To solve this problem, they created a new dataset, called
SVAMP, by applying some variations over the word problems
of one-unknown arithmetic MWP on a datasets of MAWPS
and ASDiv-A. The results showed that existing models have
much lower performance when tested on SVAMP than when
tested on the previous datasets.

Inspired by the work in [19], this paper presents
Graph2Tree+, an enhanced version of Graph2Tree considering
variation types that SVAMP made on the benchmarks of
MAWPS and ASDiv-A as an indicator of improvements. In
particular, we design two graphs that can further enrich the
information given to the graph-based encoder. The first one
is Dependency Graph that defines the relationship between
words. By letting model to know this relationship, we expect
that the model can understand more about the text in MWP
with information using characteristics of natural language.
Second, we construct Softly Expanded Quantity Cell Graph.
This graph is an improved version of the previous Quantity
Cell Graph presented in Graph2Tree, which adds soft connec-
tion between quantity and words nearby the word related to978-1-6654-2678-7/22/$31.00 © 2022 IEEE

Fig. 1. A whole model structure of Graph2Tree+

quantity. With this, we expect model can use more linguistic
information for generating equations. Finally, we introduce
question embedding vectors to provide the information of
question sentence. By feeding this additional question infor-
mation to the tree-based decoder we expect the model to
generate each tree node considering what exactly the math
word problem asks to calculate.

The contributions of this paper are as follows:
• We propose methods of improving graph representation

of the math word problem: Dependency Graph and
Softly Expanded Quantity Cell Graph. With these,
models can train using linguistic information of math
word problem and can enrich the relation between words.

• We employ question embedding for the tree-based de-
coder when generating an equation. With this embedding,
the model can generate equation conditioned on the ques-
tion sentence, making sure that the generated equation is
related to what the question is asking.

• We conduct experiments on three available MWP bench-
mark datasets and prove that our method outperforms the
original Graph2Tree model, and are more robust in the
case where variations are made onto the word problems.

II. BACKGROUND

In this section, we first formulate the MWP task. Then,
we briefly review the Graph2Tree [15] approach to solve the
MWP task and some variations made on the previous datasets
to build SVAMP [19] for robust evaluation.

A. Problem Formulation

The Math Word Problem (MWP) task requires machine
to derive an equation that can actually be calculated when
natural language problem is given. We denote the word
problem as P , which is a sequence consisting of word to-
kens and numeric values. Word tokens are represented as
Wp = {w1, w2,· · · , wm}, whereas numeric values are denoted
as Np = {n1, n2,· · · , nl}. To solve MWP, our goal is to map
P to a correct mathematical equation, denoted as Ep, thus es-
timating a conditional probability of P (Ep|P). Since we focus

on arithmetic operations only, Ep contains O ∈ {+,−,×,÷}
and numbers Np.

B. Graph-to-Tree
To understand and to retrieve the relations in the given

problem P , Graph2Tree [15] uses graph-based encoder in-
spired by the graph transformer model [13]. This model first
initialize the input node representation by learning hidden
state representations of bidirectional LSTM neural networks.
Then, two graphs named Quantity Cell Graph and Quantity
Comparison Graph are created.

First, Quantity Cell Graph (Gqcell) tries to enrich the
representation of the quantities using the information given
by the natural language description of the problem. It is
constructed by connecting the quantity ni and its related
nodes wj ∈ {w1i,· · ·wqi}, which are extracted by using
dependency parsing, constituency parsing, and POS tagging.
Secondly, Quantity Comparison Graph (Gqcomp) is added to
give an information about the numerical value of a quantity
and the relations between the quantities. Note that a directed
edge between ni to nj is created only when ni > nj is
true. Those two graphs are represented as adjacency matrices
(Aqcell and Aqcomp), which are provided along with the initial
node embeddings as an input to the graph transformer to
construct the entire graph representation zg .

Now that the model have the knowledge extracted from the
given word problem, it uses a tree-based decoder inspired by
the Goal-driven Tree Structure (GTS) [4] to generate a valid
equation for the given problem. This tree-based decoder builds
the root node qroot using the graph representation zg for the
tree-based decoder to start with. Then, it generates the left
child nodes conditioned on their parent node until the leaf
node is produced, then it generates the right nodes. When
generating a node, its value is predicted - if the predicted
value is an operator, two empty child nodes are created, and
if it is a quantity, the node becomes a leaf node.

C. SVAMP
By showing that the performance of various models signifi-

cantly drops when they apply small variations over an existing

Fig. 2. An example of dependency graph

benchmarks, researchers of SVAMP suggest that the exist-
ing benchmarks of MWP are not robust enough to evaluate
model performance. Thus, they built a new benchmark dataset,
SVAMP, by applying variations on MAWPS and ASDiv-A,
which are English MWP datasets of arithmetic problems.

The variations they made can be categorized into three types
based on the ability they can expect for the ideal model:
Question Sensitivity, Reasoning Ability, and Structural Invari-
ance. Question Sensitivity changes either object or structure
of the question, expecting model to derive the right equation
when only the question of the problem is changed. Reasoning
Ability adds or change information provided on the problem or
invert the operation, expecting model to determine a change in
reasoning of problem text. Structural Invariance adds irrelevant
information or change order of objects or phrases, expecting
model to understand the relationship between information
retrieved so that it knows what is the information needed for
problem solving.

III. METHODOLOGY

In this paper, we propose three methods that can be applied
to the original Graph2Tree to enhance their performance. Our
model, Graph2Tree+, first encodes MWP text input using
RoBERTa and put it into the BiLSTM to get the node repre-
sentation. Simultaneously, three graphs are constructed: Quan-
tity Comparison Graph (Gqcomp), Softly Expanded Quantity
Cell Graph (Gsoft), and Dependency Graph (Gdep). Method
for constructing Quantity Comparison Graph has not been
changed from the original Graph2Tree. Each of these graphs
enriches the information about relationship between quanti-
ties, between quantity and words, and between words. After
converting these three graphs as adjacency matrices, graph-
based encoder learns entire graph representation zg using those
matrices and learned node representation as an input. Then, we

Fig. 3. An example of softly expanded quantity cell graph

get question embedding zq and put it to global context zg to
make sure that the model knows what given MWP is asking.
Along with zg , zq is used for tree-based decoder to generate
the target equation that can be calculated for final solution.
See Fig. 1 for more understandings.

A. Dependency Tree

The graph-based encoder of the original Graph2Tree model
uses Quantity Cell Graphs and Quantity Comparison Graph as
an input. Quantity Cell Graphs represent the relation between
quantity and words whereas Quantity Comparison Graph
represents the relation between quantities. However, none of
them considers the relationships between words. The word
problem P is described in text and it is important to understand
the relationship between words when understanding the natural
language. When those relationships are well captured by the
model, it can relate right information to solve the problem and
can perform well regardless of the change in sentence structure
or phrases.

We simply construct an additional graph call Dependency
Graph to represent the word relationships. We first parse the
MWP sentence to retrieve the dependency between words.
This dependency represents the relationship between the words
in P . Then, we convert the parsed tree into a graph by
connecting parent node to a child node using a directed edge.
The generated graph then transforms to adjacency matrix
Adep by setting its value to 1 when two different words are
connected or when a word is connected to its own-self. An
example is illustrated in Fig. 2, which shows a dependency
parse tree and adjacency matrix formed with the sentence of
“James wants to distribute 190 apples”. For adjacency matrix,
black cell indicates the edge value of 1 when light gray cell
indicates 0. The diagonal of the adjacency matrix is black
since the words are connected to themselves.

B. Softly Expanded Quantity Cell Graph

In the original Graph2Tree model, Quantity Cell Graph
Gqcell was constructed by connecting quantity ni and related
words wj , setting its value to 1 for its adjacency matrix.

TABLE II
RESULT OF EACH MODEL FOR BENCHMARK DATASETS

MAWPS ASDIV SVAMP
Graph2Tree 88.1 80.0 64.5
Graph2Tree + zq 88.0 81.3 65.0
Graph2Tree + Gdep 89.0 81.2 65.7
Graph2Tree + Gsoft 88.9 81.2 65.2
Graph2Tree+ 89.4 81.4 66.6

This let model to successfully know whether or not quantities
and words are related to each other. However, this method
assumes that the quantity-related words are correctly chosen.
Furthermore, it has an limitation that it is hard to use the
surroundings of selected word.

Therefore, we improve the previous Quantity Cell Graph by
softly connecting surroundings of the quantity-related words
to the quantity and named it Softly Expanded Quantity Cell
Graph Gsoft. Fig. 3 shows an example. As the distance
between the words increases, the weight of the connected edge
gradually decreases. This will result in adding a gradually
decreasing weight on a vertical and horizontal line of place
in adjacency matrix where the connected quantity and the
quantity-related words meet. When the window size of related
words is k, quantity Np = {n1, n2,· · · , nl}, and quantity-
related words Wp = {w1, w2,· · · , wm}, the values of matrix
W s,t

soft containing expanded weight from arbitrary ns and wt

are calculated using the following equation:

W s,t
soft[i, j] =

{
1− (max(|j − wt|, k) / k)2 if i = ns

1− (max(|i− ns|, k) / k)2 if j = wt

(1)

Thus, when k = 4, weight will be added to W s,t
soft on

vertical range of (wt − 4, wt + 4) and horizontal range of
(ns−4, ns+4) depending on the distance from ns and wt, and
those weights will be aggregated on the identical index (i, j),
clipped when the aggregated value goes over 1. Therefore, the
value of the position (i, j) in adjacency matrix Asoft of Softly
Expanded Quantity Cell Graph is defined as:

Asoft[i, j] = min

(∑
s

∑
t

W s,t
soft[i, j], 1

)
(2)

For example, in original matrix of Fig. 3, there are no
relations between “Amy” and other words. However, in our
proposed matrix, the weight propagated from other relations
provide softened weights computed by above equation to the
row of “Amy”.

C. Question Embedding

To solve MWP, the model needs to find out the information
what question requires from the given text. Even when the
body text is identical, the solution depends largely on what
question is asking for. Thus, in our model, we propose a
question embedding zq added to the input of tree-based
decoder directly. With this, decoder can generate an equation

TABLE III
RESULT OF GRAPH2TREE MODELS IN VARIATION CATEGORIES

Graph2Tree Graph2Tree+

Question Sensitivity 49.8 57.0
Reasoning Ability 64.0 67.8

Structural Invariance 62.2 62.6

based on question embedding without any loss of question
information.

To embed the question, we first use BiLSTM to convert
text tokens into a node representation. We did not remove the
question sentence from the problem sentence, but we used the
last hidden state of the BiLSTM after feeding the question
sentence as an additional input. Then, that last hidden state zq
is simply concatenated to the graph representation zg , passing
feed forward network to combine those. By inputting question
embedding into the global context directly, the model can
generate and predict the tree nodes conditioned on question
information, estimating P (Ep|zg, zq).

IV. EXPERIMENTS

To compare our proposed methods with the original
Graph2Tree model, we conduct several experiments and an-
alyzed the results to investigate the effects of each of the
components that we applied to our model.

A. Implementation Detail

We trained all the models using the hyperparameters used
in the experiments in [19] for the ease of comparison. We used
the RoBERTa word embedding with a dimension of 768. The
dimensions of the hidden states for layers are set to 384. The
batch size and dropout rate are 8 and 0.5 respectively. We use
the Adam optimizer with a learning rate of 1e-5 for RoBERTa,
8e-4 for graph-based encoder and tree-based decoder, and
used the weight decay of 1e-5. The models are trained for
50 epochs on NVIDIA 2080 Ti GPU. For preprocessing, we
used the NLTK package [20] for word tokenizer, and used
spaCy [21] for parsing the dependency tree. When Gdep is
used, the number of GCN head is set to 6 to give 2 heads per
graph, whereas when Gdep is not used, the number of GCN
head is set to 4.

B. Datasets and Evaluation Metrics

Three datasets are used to compare our methods to the
Graph2Tree model: SVAMP [19], MAWPS [17], and ASDiv-
A [18]. MAWPS contains 2373 MWPs, and ASDiv-A contains
1218 MWPs of arithmetic problems. SVAMP, the dataset
created by making variations on both MAWPS and ASDiv-
A, contains 1000 MWPs. All of these datasets are in English.
We used SVAMP to check if our methods can reach closer
to the ideal model that SVAMP expect by considering each
variation type, and used MAWPS and ASDiv-A to check
whether or not our method can solve existing MWPs generally
well. For SVAMP, models are trained on the combined dataset
of MAWPS, ASDiv-A, and little amount of the SVAMP then

TABLE IV
RESULT OF EACH MODEL FOR VARIATION TYPE IN SVAMP

Graph2Tree with zq with Gdep with Gsoft

Question
Sensitivity

Same Obj, Diff Struct 56.4 56.0 60.5 56.6
Diff Obj, Same Struct 36.1 47.6 43.8 41.1
Diff Obj, Diff Struct 56.9 58.1 50.6 49.7

AVG 49.8 53.9 51.6 49.1

Reasoning
Ability

Add Rel Info 60.9 61.3 62.8 61.5
Change Info 48.3 50.9 50.1 53.2

Invert Operation 82.8 81.8 83.3 83.7
AVG 64.0 64.7 65.4 66.1

Structural
Invariance

Change order of Obj 63.6 61.8 61.8 60.3
Change order of Phrases 69.8 73.3 73.7 76.4

Add Irrl Info 53.3 52.8 55.6 49.6
AVG 62.2 62.6 63.7 62.1

tested purely on SVAMP data that are not used when training,
as it is provided on its benchmark. We used 5-fold cross-
validation for evaluation and used the solution accuracy as the
evaluation metric.

V. RESULTS

We have conducted experiments over five different types
of model to compare our proposed methodologies. First,
Graph2Tree is an original model proposed by Zhang et al. [15].
Secondly, Graph2Tree + zq is the model that question embed-
ding zq is added along with zg . Third, Graph2Tree + Gdep is
one that Dependency Graph is constructed along with other
two graphs of Quantity Cell Graphs and Quantity Compari-
son Graph. Fourth, Graph2Tree + Gsoft changes the original
Quantity Cell Graphs to Softly Expanded Quantity Cell Graph.
Lastly, Graph2Tree+ is the one that combines all the methods
we propose: Graph2Tree +zq +Gdep +Gsoft.

A. Overall Results

Table II shows the solution accuracy measured on bench-
mark datasets of MAWPS, ASDIV-A, and SVAMP. From the
result, we can observe that the Graph2Tree+ achieved the
highest accuracy in every benchmark against other models
including original Graph2Tree. This indicates that our graph
can surely solve the MWP well, and outperforms the original
Graph2Tree, which records state-of-the-art before. Also, we
could see that all models which three methods are each applied
achieved better results than Graph2Tree, meaning all three
methods are effective for overall performance.

B. Results based on Variation Type

To observe whether or not each of our methods works
effectively for the variation type that SVAMP suggested, we
measured the solution accuracy for each of the variation type
they made. Each large categories contains three smaller types
of variations. Table III and Table IV shows measured solution
accuracy of each variation categories in SVAMP dataset.

1) Question Sensitivity: For Question Sensitivity, we can
observe that Graph2Tree+ got better accuracy score than
original Graph2Tree model, with difference of 7.2%. This
shows that our proposed model can relate information given
by the question more than the original when generating

equation. Also, we could see that the Graph2Tree with zq
got the highest average result as expected. This shows that the
question embedding is effectively working by letting model
to generate equation conditioned on the information from
question sentence.

2) Reasoning Ability: For Reasoning Ability, Graph2Tree+

got 3.8% higher solution accuracy score compared with
Graph2Tree, meaning that our proposed methods actually
help model to capture the reasoning of problem text. When
comparing with other methods and baseline, Graph2Tree with
Gsoft scored highest accuracy. We assume this is because
that the Gsoft let model to connect surroundings of quantity-
related word and thus can gain more semantic information for
reasoning.

3) Structural Invariance: For Structural Invariance,
Graph2Tree+ got higher score than Graph2Tree with
difference of 0.4%, and Graph2Tree with Gdep got the
highest average score than other two methods. This indicates
that Dependency Graph helps model to understand structural
information by giving information of how words are depending
on each other, which is related to the structural characteristic
of the natural language. However, we can observe that the
difference between Graph2Tree and the Graph2Tree with
Gdep is only 1.5% meaning that Dependency Graph may
not enough for model to fully understand the structural
information.

VI. CASE STUDY

To check the difference between Graph2Tree model and
Graph2Tree+ more sophisticatedly, we carried out a case
study. The results of case studies are shown in Table V. In
Case 1, the model is required to relate the “peaches” that are in
“green” and “red”, not “yellow”. Graph2Tree+ extracted this
successfully from the question by retrieving numbers of “71”
and “8”, not “7” which is about “yellow peaches”. However,
Graph2Tree failed to extract the information and considered
“7” as a part of the equation.

In case 2, Graph2Tree and Graph2Tree+ generate different
results in the type of operation they used. In this question, the
model needs to understand the sequence of “collects”, “threw
away”, and “has” for calculating the number of “bottle caps”.
Graph2Tree generated a wrong result by using “+” whereas

TABLE V
CASE STUDY WITH RESPECT TO VARIATION IN SVAMP

Question: 7 red peaches 71 yellow peaches and 8 green peaches are
in the basket. how many more green peaches than red peaches are in
the basket?
Variation Type: Question Sensitivity
Graph2Tree: 71 - 7 Graph2Tree+: 8 - 7
Question: Danny collects bottle caps. He found 63 bottle caps at the
park while he threw away 51 old ones. Now he has 33 bottle caps in
his collection. How many bottle caps did Danny have at first?
Variation Type: Reasoning Ability
Graph2Tree: 33 + 51 + 63 Graph2Tree+: 33 + 51 - 63
Question: Danny collects bottle caps and wrappers. He found 66
wrappers and 39 bottle caps at the park. Now he has 16 bottle caps
and 68 wrappers in his collection. How many wrappers did Danny
have at first?
Variation Type: Structural Invariance
Graph2Tree: 16 - 66 Graph2Tree+: 68 - 66

Graph2Tree+ generated the right result of using “-”. This
indicates that Graph2Tree+ understands how reasoning works
in the body text.

In Case 3, irrelevant information is added into the body
text: “39 bottle caps”. Because question asks the number of
“wrappers”, the model should ignore any numbers that are not
relevant to it. Unlike Graph2Tree, Graph2Tree+ understands
this and obtained a correct result.

VII. RELATED WORK

Math Word Problem (MWP) is the task of converting
short natural language sentences into the simple mathematical
equation and solution. The MWP task includes number word
problems [22], logic puzzle problems [23], arithmetic word
problems [24], [25], algebra word problems [26]–[28], and
geometry word problems [29], and have drawn interests from
lots of researchers.

Previous MWP methods can be largely categorized into
pattern matching based [30]–[34], statistical machine learning
based [35]–[37], and semantic parsing based [28], [38], [39].
They were mainly evaluated on small size of datasets, and
tend to show low performance on large datasets [40]. To
address this problem, recent works employ deep learning based
models including recursive neural networks [16], sequence-
to-sequence [1], multi-head attentions [41], tree-structure de-
coders [3], [4], graph-to-tree [12], [15], and graph transformers
[13], [14].

Graph representation learning, which uses semantic em-
bedding learning of Graph Neural Networks (GNN), is a
research field that has recently attracted attention [5], [6].
GNN has shown a good performance with various structure
such as sequence-to-graph [42], graph-to-sequence [43], tree-
to-tree [44], graph-to-tree [45], and graph-to-graph [46]. Fur-
thermore, a graph attention network [7] combined with a self-
attention-based transformer that performed well in tasks such
as neural machine translation [10] and language modeling
[48] generated good results in knowledge graph-to-text tasks.
Another transformer architecture is the graph transformer [2],
which extends the vanilla multi-head attention mechanism to
a relation-enhanced global attention mechanism.

VIII. CONCLUSION

In this paper, we propose an improved version of Graph-
to-Tree model [15], Graph2Tree+. We applied three methods
to the original model: constructing additional Dependency
Graph, improving Quantity Cell Graph into Softly Expanded
Quantity Cell Graph, and introducing question embedding.
We conducted experiments on three benchmarks of MAWPS,
ASDiv-A, and SVAMP, and obtained higher solution accu-
racy score than state-of-the-art baseline, Graph2Tree. Also,
we showed that our methods can effectively deal with the
problems even when the question, the structure, or information
of the given MWP sentence is modified. We hope that more
methods to consider both the linguistic properties and the
mathematical properties, such as structural information of the
natural language and commutative law of the mathematical
equation.

ACKNOWLEDGEMENT

This work was supported by Institute of Informa-
tion & communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT)
(No.2019-0-00421, Artificial Intelligence Graduate School
Program(Sungkyunkwan University)), and by Institute of In-
formation & communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government(MSIT)
(No.2021-0-02136, Research and Development of Artificial
Intelligence that understands Korean Math Word Problems
based on Deep Learning)

REFERENCES

[1] L. Wang, Y. Wang, D. Cai, D. Zhang, and X. Liu, “Translating a math
word problem to a expression tree,” presented at the EMNLP, 2018.

[2] T. Chiang, and Y. Chen, “Semantically-Aligned Equation Generation for
Solving and Reasoning Math Word Problems,” presented at the NAACL,
2019.

[3] Q. Liu, W. Guan, S. Li, and D. Kawahara, “Tree-structured Decoding
for Solving Math Word Problems,” presented at the EMNLP, 2019.

[4] Z. Xie, and S. Sun, “A Goal-Driven Tree-Structured Neural Model for
Math Word Problems,” presented at the IJCAI, 2019.

[5] Y. Li, R. Zemel, M. Brockschmidt, and D. Tarlow, “Gated graph
sequence neural networks,” presented at the ICLR, 2016.

[6] T. N. Kipf, and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” presented at the ICLR, 2017.

[7] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y.
Bengio, “Graph Attention Networks,” presented at the ICLR, 2018.

[8] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” presented at the NeurIPS, 2017.

[9] K. Xu, L. Wu, Z. Wang, Y. Feng, and V. Sheinin, “Sql-to-text generation
with graph-to-sequence model,” presented at the EMNLP, 2018.

[10] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph
Convolutional Encoders for Syntax-aware Neural Machine Translation,”
presented at the EMNLP, 2017

[11] K. Xu, L. Wu, Z. Wang, Y. Feng, M. Witbrock, and V. Sheinin,
“Graph2Seq: Graph to Sequence Learning with Attention-based Neural
Networks,” arXiv:1804.00823, 2018

[12] S. Li, L. Wu, S. Feng, F. Wu, F. Wu, and S. Zhong, “Graph-to-tree
neural networks for learning structured input-output translation with
applications to semantic parsing and math word problem,” presented
at the EMNLP, 2020.

[13] R. Koncel-Kedziorski, D. Bekal, Y. Luan, M. Lapata, and H. Hajishirzi,
“Text generation from knowledge graphs with graph transformers,”
presented at the NAACL, 2019.

[14] D. Cai, and W. Lam, “Graph Transformer for Graph-to-Sequence
Learning,” presented at the AAAI, 2020.

[15] J. Zhang, L. Wang, R. K. W. Lee, Y. Bin, Y. Wang, J. Shao, and
E. P. Lim, “Graph-to-tree learning for solving math word problems,”
presented at the ACL, 2020.

[16] Y. Wang, X. Liu, and S. Shi, “Deep Neural Solver for Math Word
Problems,” presented at the EMNLP, 2017.

[17] R. Koncel-Kedziorski, S. Roy, A. Amini, N. Kushman, and H. Hajishirzi,
“MAWPS: A Math Word Problem Repository,” presented at the ACL,
2016.

[18] S. Y. Miao, C. C. Liang, and K. Y. Su, “A Diverse Corpus for Evaluating
and Developing English Math Word Problem Solvers,” presented at the
ACL, 2020.

[19] A. Patel, S. Bhattamishra, and N. Goyal, “Are NLP Models really able
to Solve Simple Math Word Problems?,” presented at the NAACL, 2021.

[20] S. Bird, E. Klein, and E. Loper, “Natural language processing with
Python: analyzing text with the natural language toolkit,” O’Reilly
Media, Inc., 2009.

[21] M. Honnibal, and I. Montani, “spaCy 2: Natural language understanding
with Bloom embeddings, convolutional neural networks and incremental
parsing,” to appear 2017.

[22] S. Shi, Y. Wang, C. Y. Lin, X. Liu, and Y. Rui, “Automatically Solving
Number Word Problems by Semantic Parsing and Reasoning,” presented
at the EMNLP, 2015.

[23] A. Mitra, and C. Baral “Learning to automatically solve logic grid
puzzles,” presented at the EMNLP, 2015.

[24] M. J. Hosseini, H. Hajishirzi, O. Etzioni, and N. Kushman, “Learning to
Solve Arithmetic Word Problems with Verb Categorization,” presented
at the EMNLP, 2014.

[25] S. Roy, and D. Roth, “Solving General Arithmetic Word Problems,”
presented at the EMNLP, 2015.

[26] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, “Learning to
Automatically Solve Algebra Word Problems,” presented at the ACL,
2014.

[27] L. Zhou, S. Dai, and L. Chen, “Learn to Solve Algebra Word Problems
Using Quadratic Programming,” presented at the EMNLP, 2015.

[28] R. Koncel-Kedziorski, H. Hajishirzi, A. Sabharwal, O. Etzioni, and S.
D. Ang, “Parsing Algebraic Word Problems into Equations,” presented
at the TACL, 2015.

[29] M. Seo, H. Hajishirzi, A. Farhadi, O. Etzioni, and C. Malcolm, “Solv-
ing Geometry Problems: Combining Text and Diagram Interpretation,”
presented at the EMNLP, 2015.

[30] D. G. Bobrow, “Natural language input for a computer problem solving
system,” MIT, 1964.

[31] D. J. Briars, and J. H. Larkin, “An integrated model of skill in solving
elementary word problems,” Cognition and Instruction, 1984.

[32] M. Yuhui, Z. Ying, C. Guangzuo, R. Yun, and H. Ronghuai, “Frame-
based calculus of solving arithmetic multi-step addition and subtrac-
tion word problems,” in Education Technology and Computer Science
(ETCS), IEEE, 2010.

[33] C. Liguda, and T. Pfeiffer, “Modeling Math Word Problems with Aug-
mented Semantic Networks,” International Conference on Application of
Natural Language to Information Systems, Springer, Berlin, Heidelberg,
2012.

[34] S. Roy, T. Vieira, and D. Roth, “Reasoning about quantities in natural
language,” TACL, 2015.

[35] N. Kushman, Y. Artzi, L. Zettlemoyer, and R. Barzilay, “Learning to au-
tomatically solve algebra word problems. Association for Computational
Linguistics,” presented at the ACL, 2014.

[36] L. Zhou, S. Dai, and L. Chen, “Learn to solve algebra word problems
using quadratic programming,” presented at the EMNLP, 2015.

[37] S. Roy, and D. Roth, “Mapping to declarative knowledge for word
problem solving,” presented at the TACL, 2018.

[38] S. Shi, Y. Wang, C. Y. Lin, X. Liu, and Y. Rui, “Automatically solving
number word problems by semantic parsing and reasoning,” presented
at the EMNLP, 2015.

[39] Y. Zou, and W. Lu. “Text2Math: End-toend parsing text into math
expressions,” presented at the EMNLP, 2019.

[40] D. Huang, S. Shi, C. Y. Lin, J. Yin, and W. Y. Ma, “How well do
computers solve math word problems? large-scale dataset construction
and evaluation,” presented at the ACL, 2016.

[41] J. Li, L. Wang, J. Zhang, Y. Wang, B. T. Dai, and D. Zhang, “Modeling
intra-relation in math word problems with different functional multi-head
attentions,” presented at the ACL, 2019.

[42] X. Peng, D. Gildea, and G. Satta, “Amr parsing with cache transition
systems,” presented at the Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[43] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using
gated graph neural networks,” presented at the ACL, 2018.

[44] X. Chen, C. Liu, and D. Song, “Tree-to-tree neural networks for program
translation,” presented at the NeurIPS, 2018.

[45] P. Yin, G. Neubig, M. Allamanis, M. Brockschmidt, and A. L. Gaunt,
“Learning to represent edits,” presented at the ICLR, 2019.

[46] X. Guo, L. Wu, and L. Zhao, “Deep graph translation,”
arXiv:1805.09980, 2018.

[47] L. H. B. Nguyen, V. Pham and D. Dinh, ”Integrating AMR to Neu-
ral Machine Translation using Graph Attention Networks,” 2020 7th
NAFOSTED Conference on Information and Computer Science (NICS),
2020, pp. 158-162, doi: 10.1109/NICS51282.2020.9335896.

[48] B. Zheng, H. Wen, Y. Liang, N. Duan, W. Che, D. Jiang, M. Zhou, and
T. Liu “Document Modeling with Graph Attention Networks for Multi-
grained Machine Reading Comprehension,” presented at the ACL, 2020.

