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Abstract 
Online role playing games may be enjoyed periodically for 
months or years at a time. Players often log onto the game 
and play for a short time, and then log off for a long period 
of time before returning to the game, even though events 
continue in the persistent game world. Providing a summary 
of events that have occurred while a player was away from 
the game would help the player maintain game context. In 
this paper, we present a computational framework that 
generates a summary from game log messages. 

1. Introduction   
In recent years, it has become commonplace for game 
players to spend increasing amounts of time playing 
games. The users of single player games such as The Sims, 
Half-Life 2, and Prince of Persia often play a single game 
over the course of weeks or months by means of saving the 
game state when a gaming session is finished and loading 
the game state upon returning to the game. Furthermore, 
the players of Massively Multi-player Online Role Playing 
Games (MMORPGs) such as Lineage, World of Warcraft, 
and Everquest experience a persistent online virtual world. 
Players become extremely involved in these virtual worlds 
for extended periods of time (Griffiths et al., 2003). Thus it 
would be beneficial to provide players with summaries of 
important events that occur during their absence.  
 Research on the automatic summarization of game logs 
is closely related to research in story summarization 
(Capus and Touringy, 2003; Lehnert, 1981) and automated 
commentary generation (Tanaka-Ishii et al., 1998; Voelz et 
al., 1999; André et al., 2000). However, it is difficult to 
apply this research directly to game log summarization due 
to a number of limitations. For instance, story 
summarization models (Capus and Touringy, 2003; 
Lehnert, 1981) generally require manually pre-processed 
information which is not present in game logs. In contrast, 
commentary systems may be able to process raw game 
logs, however, their content selection is designed to 
produce text “in the moment” rather than to produce 
coherent narrative discourse.  

                                                 
Copyright © 2006, American Association for Artificial Intelligence  
 (www.aaai.org). All rights reserved. 
 

 To support the functionality of narrative summarization 
of game experiences, this paper presents a framework for 
generating a summary text from game log messages. Our 
fundamental assumption is that a game log can be used to 
generate a collection of plans that account for the logs’ 
events. From these plans, a series of salient events can be 
identified by their causal and temporal relationship to the 
goal of the plans, as evidenced by psychological research 
on story recall (Trabasso et al., 1984) and question-
answering in the context of stories (Graesser et al., 1991). 
Our approach involves two distinct tasks: translating a 
game log into a plan structure and constructing a summary 
centered on important events in a coherent manner. 

2. Framework 
This section presents a framework for summarizing game 
experiences as narratives. Our system consists of two main 
components: a log analyzer and a skeleton builder. The log 
analyzer takes a game log as input and generates a 
sequence of actions structured as a plan achieving the 
given mission of the game or of the game’s current level. 
This plan is then sent as input to the skeleton builder, 
which identifies essential elements of the plan to build a 
summary of the game’s events.  

2.1 The Log Analyzer 
The log analyzer constructs plan structures from a game 
log. While the current log messages by commercial games 
contain information mainly for system administrative 
purposes such as monitoring network traffic, the needs for 
readable log formats are under consideration (Garner, 
2004). For this research, we assume that the log file input 
to the log analyzer contains various game events (e.g., user 
identification, user activities, and team activities). We use 
the plan structure generated by Crossbow, a hierarchical, 
partial-order causal link planner of the same type as the 
Longbow planner (Young et al., 1994). 1 In this article, a 
plan is represented as a totally ordered series of plan steps, 
<s1, s2, …, sn> where si is an instantiation of a plan operator 
contained in a plan library L and si precedes sj where i<j. A 
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plan operator op is represented as a tuple <preconds, 
effects> where preconds are a set of conditions <c1, c2, …, 
cn> that must be satisfied for op to execute correctly while 
effects, <c1, c2, …, cn>, represent those changes to the 
world state made as a result of the successful execution of 
a step instantiated from the plan operator op. A causal link 
is represented as (si � sj; ek), notating a plan step si’s 
effect ek is used to satisfy the precondition ek of sj. Binding 
constraint is described as <si; ((p1, c1) (p2, c2)) > where a 
plan step si binds constant c1 for p1 and c2 for p2. We use a 
totally ordered plan structure under the assumption that the 
log file is written sequentially.  
 For us to construct a plan from a game log, the log 
analyzer requires the initial state and the goal of the game 
world, and a plan library, and performs the following steps. 
First, for each log message the system chooses a plan 
operator in the plan library which has the same name as the 
action name in the message, and instantiates it with the 
information contained in the message. The log analyzer 
uses these instantiated actions as the plan steps of a partial 
plan, and then fills in its missing plan structure such as 
causal links to construct a complete plan.  
 To illustrate the plan building process, we present 
example log messages following the format specification 
in (Garner, 2004) as in Figure 1, which can be obtained 
from a shooting game where each message prefixed by a 
time stamp. Suppose a game in which the user, who plays 
the character Azure in the game, was given a mission to 
construct her military base where her enemy was guarding. 
Once the game began, she picked up a shotgun, and then 
the guard Ricker attacked her with his rifle. The attack 
damaged her, and she dropped her gun. Then she picked up 
her gun and shot the guard Ricker to death. She 
constructed her base and completed her mission. With 
given these messages, the log analyzer first converts the 
log messages into a sequence of instantiated actions. Next, 
the system builds a partial plan P composed of the first 
step INIT, describing the initial game world as its effects, 
and the last step FINISH, describing the goal state as its 
preconditions. It then modifies P by inserting those 
instantiated actions between the INIT and FINISH steps. 
As the last step, the system establishes causal links for 
every step in P. A causal link is made when a precondition 
of a plan step is unified with an effect of an earlier plan 
step. When several events are available for the source step, 
the log analyzer selects the closest event in time to the 
destination step in order to restrict the interval that the 
established causal link can be undone by other actions. For 
example in Figure 1 where the two ‘acquiring’ actions at 
T1 and T6 are available as the source step of the ‘killing’ 
action at T8, the latter is chosen. The causal link 
establishment process starts at FINISH, which is the last 
step of P, and plans toward the first step INIT. This process 
continues until all the preconditions of every plan step in P 
are checked. Finally, the complete plan P (as the diagram 
in Figure 2) is sent to the skeleton builder. In Figure 2, 
only those actions which are causally related to the user’s 
goal are shown.   

2.2 The Skeleton Builder 
The skeleton builder determines a series of the important 
actions, the skeleton of the story, based on the user’s 
knowledge. The skeleton builder first generates a candidate 
skeleton composed of essential events of the plan, and then 
it tests the skeleton to ensure that its content is coherent, 
that is, that it can be understood as an integral story.  
 Our system rates the importance of each event based on 
a method for extracting important actions that are likely to 
be included in the story recall, devised by Trabasso et al. 
(1984). To determine an individual story event’s 
importance, their approach counts the number of causal 
relationships with other steps in the narrative and measures 
each event’s importance by analyzing its role in a series of 
actions in a story that are causally related. Adapting their 
approach, the skeleton builder approximates causal 
relationships by counting the number of incoming and 
outgoing causal links of a plan step and measuring the 
qualitative importance of events which are determined by 
their roles in the plan. We define three important roles of 
events in a story plan: an opening act, a closing act, and a 
motivated act. An opening act is the first action in the plan. 
A closing act is the last action that occurs in the story. 
Motivated acts are actions that establish a precondition of 
the goal state. After computing each event’s importance, 
the top N events are identified as kernels. The value for N 
can be set as either an integer or a ratio against the total 
number of actions in the plan.  
 Once a skeleton is extracted, the system checks if the 
skeleton is coherent based on a model of the reader’s 
comprehension process. This model is composed of a 
reasoning algorithm, a reasoning resource bound, 
knowledge and preferences. To model a user’s reasoning, 
we use Crossbow, a version of the Longbow planning 
system (Young et al., 1994). Prior work has provided 
strong evidence that human task reasoning is closely 
related to partial-order planning algorithms (Rattermann, 
2001) and that refinement search (Kambhampati et al, 
1995), the plan construction process performed by 
Crossbow, can be used as an effective model of the plan 
reasoning process (Young 1999). The coherency checking 

Figure 2. A plan representing a game experience 

 

Figure 1. A log example  

T1: Player “Azure” acquired “shotgun”.  
T2: Player “Ricker” attacked player “Riker” with “rifle”. 
T4: Player “Azure” dropped “shotgun”.  
T6: Player “Azure” acquired “shotgun”.  
T7: Player “Azure” attacked player “Riker” with “shotgun”. 
T8: Player “Azure” killed player “Riker” with “shotgun”. 
T9: Player “Azure” triggered “construct-base”. 



algorithm iterates through two phases: coherency check 
and event selection. The coherency check phase runs 
Crossbow to find a complete plan to achieve the goal 
which contains the events in the skeleton. If such a plan is 
found, the skeleton is coherent and the algorithm returns. 
Otherwise, it begins the event selection phase, in which an 
event not in the skeleton with the highest importance value 
is added to the skeleton. The algorithm iterates until a 
complete plan is found. Finally, the system constructs the 
output text summary as the sequence of log messages that 
correspond to the actions contained in the skeleton.  

2.3. A Summary from an Example Story Plan 
This section presents a summary generated by the skeleton 
builder from a story plan. Figure 3 shows the plan realizes 
into text where one sentence represents a single action in 
the plan. In the story, an antagonist Dr. Evil plans to 
assassinate the President while a poor father Tom plans to 
trade his ring (which has magic power that Tom isn’t 
aware of) for a toy as a present for his six-year old son Ben. 
Our system takes this story plan as input and selects #2, #6, 
#11, #12, and #14 as its summary. The coherency of this 
summary is not tested in our current implementation.  

[1] Tom traveled to Dr. Evil’s castle. [2] Tom traded his ring for 
Dr. Evil’s toy. As a result, Tom obtained the toy that Ben wants 
to have and Dr. Evil obtained the ring of absolute power. [3] 
Tom traveled back to his house, and went up to the Christmas 
tree. [4] Tom put the toy under the Christmas tree. [5] Ben 
walked from his room to the Christmas tree. [6] Ben found his 
Christmas present—the toy that Tom left. [7] Dr. Evil went to 
the Wachovia bank to withdraw money from his bank account. 
[8] Dr. Evil withdrew enough cash from his account to buy a 
gun. [9] Dr. Evil traveled to a gun store. [10] Dr. Evil bought a 
gun. [11] The President invited Dr. Evil to the fund-raising 
event at the White House. [12] Dr. Evil traveled to the White 
House. [13] Dr. Evil used the ring of absolute power to put all 
the Secret Service agents to sleep; as a result, there was no one 
around the president. [14] Dr. Evil shot the president with his 
gun and became the ruler of the world.  

 Figure 3. A story created by Crossbow realized into a text 

 We carried out a pilot-study to evaluate the quality of 
this summary with 25 subjects from the North Carolina 
State University community. The subjects read the input 
story and then selected a sequence of 5 events that they 
think the most appropriate as its summary, and then they 
were asked to compare their summaries with the system-
generated summary. The result shows that 32% of the 
subjects reported that the system generated-summary better 
represented the story than their own selected ones, and 
52% of them answered that the system chosen  sentences 
were as good as theirs; only 12% answered their 
summaries are better than the system’s.  

3. Discussion 
This paper describes a framework for summarizing gaming 
experiences as stories by translating a game log into a plan 

structure and extracting essential events from the plan 
based on their causal relationship to the goal of the story. A 
pilot study result supports the claim that our system 
identifies essential elements of a story consistent with 
those that a human subject would select. Our future work 
will augment our plan representation with a semantic level 
adding domain-specific knowledge to the current skeleton 
builder to enhance the quality of the summary.  
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